1. Field of the Invention
The present invention relates to electrical connectors used for hard disk, and more particularly to an electrical connector used for electrically interconnecting electronic assemblies such as printed circuit boards (PCBs).
2. Description of the Prior Art
Electrical connectors are widely used in electronic devices such as hard disk to provided to electrically connect printed circuit boards (PCBs). The connector generally comprises an insulative housing and a plurality of terminals received in the housing. Referring to
However, when the electrical connector is engaged with the first PCB via soldering the soldering portion 92 onto the first PCB, a space is formed between the first surface 912 of the terminal 90 and the first PCB. At this time, the terminal 90 is connected with the first PCB only via the soldering portion 92. When the second PCB presses upon the contacting portion 94 of the terminal 90 to obtain electrical connection between the electrical connector and the second PCB, the press applied of the second PCB is only supported on the terminals 90 of the connector. Because the soldering portion 92 is formed at one distal end of the base portion 91 and a space is between the base portion 91 and the first PCB, when the press applied on the terminals 90 is too great, the soldering portion 92 will can not support all of the press and make the terminal 90 lose balance to incline toward to the first PCB. Thus, electrical connection between the second PCB and the contacting portion 94 of the terminal 90 is not obtained.
Thus, there is a need to provide a new electrical connector that overcomes the above-mentioned problems.
Accordingly, an object of the present invention is to provide an electrical connector used for hard disk, which has a reinforcement terminal, wherein the terminal is configured to securely and reliably mounted onto a printed circuit board (PCB) during a solder reflow process by providing reliable soldering portions soldered on the PCB.
To fulfill the above-mentioned object, an electrical connector in accordance with a preferred embodiment of the present invention comprises an insulative housing and a plurality terminals received in the housing. A multiplicity of passageways is defined through an upper portion and bottom portion of the housing, for receiving a corresponding number of the terminals therein. The terminal comprises a longitudinal base portion received in corresponding passageway of the housing, a spring arm, with two continuous curved members, extending upwardly from an upper portion of the base portion and a contacting portion formed at a distal end of the spring arm. The base portion defines at least two soldering portions in turn at longitudinally opposite two ends toward to a first printed circuit board (PCB). The soldering portions are soldered onto the first PCB via SMT. The contacting portion engages with a second printed circuit board (PCB) via surface mounting.
When the first PCB electrically connects to the second PCB via the connector, firstly, soldering the soldering portions of the terminal onto corresponding pads of the first PCB, then making pads of the second PCB attach onto corresponding contacting portions to obtain connection between the terminals and the second PCB. The press applied by the second PCB is completely supported on the soldering portions to make the connector keep balance relative to the first PCB so that the connector is securely and reliably mounted onto the first PCB. Which can prevent the connector from inclining downwardly toward to the first PCB during undergoing too great press applied by the second PCB.
Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Reference will now be made to the drawings to describe the present invention in detail.
Referring to
The securing portion 15 is formed adjacent to the first soldering portion 12, while the protrusion 17 is formed adjacent to the second soldering portion 13 and the spring arm 16 is formed between the second portion 13 and the third soldering portion 14. The spring arm 16 with a first and second continuous and inverted U-shaped configurations 163, 164, extending upwardly from an upper portion of the base portion 11 and a contacting portion 18 extended upwardly and perpendicularly from a distal end of the spring arm 16. The first and the second U-shaped configurations 163, 164 are connected by a first connecting arm 161, while the first U-shaped configuration and the contacting portion 18 is connected by a second connecting arm 162. The third soldering portion 14 is formed under the first U-shaped configuration 163. The base portion 11 defines an engagement surface 152 at a portion between the securing portion 15 and the first U-shaped configuration 163. The protrusion 17 defines a barb 171 at a sidewall adjacent to the second soldering portion 13.
Referring to
Referring to
When the terminal 10 is inserted into the corresponding passageway 25 of the hosing 20 from the lower face 22 toward to the upper face 21, the securing portion 15 of the terminal 10 interferentially inserts into the first opening until the sidewall 27 attaches onto the engagement surface 152, at the same time, the barb 171 fittingly is engaged with the recess 252 of the third opening 213. The spring arm 16 is likewise received in the second and third openings 212, 213 and the contacting portion 18 extends out of the upper face 21 from the third opening 213, while the first, second and third soldering portions 12, 13, 14 extend out of the lower face 22. Thus, the assembly between the terminal 10 and the housing 20 is completed.
When the connector 1 is connected with a first PCB (not shown), the connector 1 is soldered on the first PCB with the first, second and third soldering portions 12, 13, 14 of the terminal 10 being soldered on corresponding contact pads of the first PCB together. The mating force between the connector 1 and the first PCB is increased, thereby securely and reliably electrical connection between the connector 1 and the first PCB is obtained. When the contacting portion 18 of the terminal 10 is pressed by a corresponding pad of a second PCB (not shown), even if the press applied on the contacting portion 18 is too great, the press will be supported by the first, second and third soldering portions 12, 13 and 14. The connector 1 does not incline downwardly toward to the first PCB because of the connecting force between the first, second, third soldering portions 12, 13, 14 and the first PCB.
As will be appreciated from the foregoing description, the base portion 11 of the terminal 10 defines three soldering portions 12, 13, 14 in turn on the bottom surface 112. Rather than defining three soldering portions, the base portion 11 of the terminal 10 may alternatively only define two soldering portion 12, 13 at two opposite bottom ends, or more than one soldering portion between the first and second soldering portions 12, 13. Whatever combination way between the first and second soldering portions 12, 13 takes, it can increase the connecting force between the connector 1 and the first PCB and prevent the connector 1 from inclining downwardly when the second PCB presses upon.
Although the present invention has been described with reference to particular embodiments, it is not to be construed as being limited thereto. Various alterations and modifications can be made to the embodiments without in any way departing from the scope or spirit of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
94147112 | Dec 2005 | TW | national |