The present invention relates to an electrical connector, and particularly to an electrical connector having terminals inserted into an insulative housing.
An existing electrical connector includes an insulative housing, a plurality of terminals inserted into the insulative housing, and a metal shell surrounding around the insulative housing. The electrical connector defines a plurality of slots to receive the terminals, respectively. The terminal includes an interference portion retained in the corresponding slot, a contacting portion extending from one end of the interference portion, and a soldering leg extending from the other end of the interference portion. During the welding process, the soldering flux can easily climb into the slots from the soldering legs.
Therefore, it is desired to provide a new electrical connector.
To achieve the above desire, the present invention provides an electrical connector comprising an insulative housing and a plurality of terminals retained to the insulative housing. The insulative housing has a mating surface, a mounting surface, and a slot going through the mounting surface. The terminal received in the slot includes an interference portion retained in the slot, a contacting portion disposed around the mating surface, and a soldering leg extending downwardly beyond the mounting surface. The interference portion has two barbs disposed at two opposite sides thereof, respectively. The terminal includes a blocking portion connecting between the interference portion and the soldering leg. The width of the blocking portion is greater than the width of the interference portion.
Referring to
Referring to
Each of the terminals 2 has an interference portion 20 retained in the slot 13, a contacting portion 22 disposed around the mating surface 11, and a soldering leg 23 extending downwardly beyond the mounting surface 12. The interference portion 20 has two barbs 21 disposed at two opposite sides thereof, respectively. The slot 13 includes a pair of interference grooves 131 recessed along two opposite direction and a mounting groove 132 communicating with the interference groove 131. The width of the interference groove 131 is greater than the width of the mounting groove 132. The barbs 21 interfere with the interference grooves 131. The contacting portion 22 is exposed to one surface of the mating portion 15.
The terminal 2 includes a blocking portion 24 connecting between the interference portion 20 and the soldering leg 23. The width of the blocking portion 24 is greater than the width of the interference portion 20. Notably, there is a neck section (not labeled) between the blocking portion 24 and the soldering leg 23. The blocking portion 24 extends out of the slot 13. In the welding process, the blocking portion 24 can prevent the soldering flux from creeping into the slot 13.
Referring to
In the present invention, the electrical connector 100 is a vertical USB 3.1 type-A connector. Each of the terminals 2 is a USB 2.0 terminal. The width of the interference portion 20 is 1.0 mm. The width of the blocking portion 24 is 1.4 mm. The electrical connector 100 also has a USB 3.1 terminal 5 retained to the insulative housing 1 by injection molding so that the soldering flux can't climb upwardly into the insulative housing 1 where the USB 3.1 terminal retained thereto. It is noted that the present invention is not limited to the application of the USB 3.1 connector. Notably, The blocking portion has a lower end section (not) labeled) coplanar with the soldering leg in the vertical direction, which may reinforce the blocking portion. Also, the mounting surface 12 includes a pair of standoffs (not labeled) which is longer/higher than that lower end section so that such a lower end section of the blocking porting will not affect the stability of the housing which is seated upon the printed circuit board on the pair of standoffs.
However, the disclosure is illustrative only, changes may be made in detail, especially in matter of shape, size, and arrangement of sections within the principles of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201720723431.X | Jun 2017 | CN | national |