The subject matter described herein relates to an edge mount electrical connector for a substrate.
Generally, electronic devices include substrates, for example, circuit boards having a plurality of electronic components positioned thereon to carry out various functions of the electronic device. Typically, the substrates include various connectors joined thereto. The connectors may be configured to receive a cable from another substrate and/or a cable from another electronic device. The cables enable the substrate to transmit and/or receive power and/or data signals from the other substrate and/or electronic device. Some connectors include an inner contact for providing a signal circuit, an outer contact for providing a return or ground circuit, and a ground contact tab for grounding the connector to the substrate. Often, the connector may be edge-mounted to the substrate so that a mating interface of the connector extends from the substrate.
Conventional edge-mounted connectors are not without their disadvantages. In particular, edge-mount connectors are generally die cast as a single unit. However, die casting the connectors prohibits the connectors from being color coded. This may be problematic in configuring the connector to mate with a mating connector that may have one of several different keying features. When all of the connectors are formed in the same color, it may be difficult to select a connector having desired keying features. Additionally, the substrate may be configured for surface mounting the connector or through-hole mounting the connector. Generally, die-cast connectors are formed in one of a surface mount configuration or a through-hole mount configuration. Typically, it is difficult to adjust a die for either through-hole mounting or surface mounting. Accordingly, multiple molds must be used when creating die cast connectors. Moreover, die casting is generally expensive. The need for multiple dies casts increases the costs associated with manufacturing the connectors.
A need remains for an edge mount connector that can be formed for surface mounting or through-hole mounting without the need for multiple die casts. Another need remains for an edge mount connector that can be color coded based on the keying features of the connector.
In one embodiment, an electrical connector is provided including a connector sub-assembly having a stamped and formed outer contact. A dielectric insert is positioned within the outer contact. A center contact extends through the dielectric insert. A ground contact tab extends from the connector sub-assembly and is configured to ground to a substrate. The ground contact tab is configured for one of through-hole mounting or surface mounting to the substrate. An interface housing receives the connector sub-assembly. A rear housing is coupled to the interface housing. The connector sub-assembly is captured between the interface housing and the rear housing. The rear housing is coupled to the substrate to secure the interface housing to the substrate. The rear housing is configured for one of through-hole mounting or surface mounting to the substrate.
In another embodiment, an electrical connector is provided including an interface housing for receiving a connector sub-assembly. A rear housing is coupled to the interface housing. The connector sub-assembly is captured between the interface housing and the rear housing. The rear housing is configured to be coupled to a substrate to secure the interface housing to the substrate. The rear housing is configured for one of through-hole mounting or surface mounting to the substrate. A ground clip is provided having coupling mechanisms to secure the interface housing to the rear housing. The ground clip has a ground surface to ground the connector to a chassis of an electronic device.
In another embodiment, an electrical connector is provide including a connector sub-assembly having a stamped and formed outer contact. A dielectric insert is positioned within the outer contact. A center contact extends through the dielectric insert. A ground contact extends from the connector sub-assembly and is configured to ground to a substrate. The ground contact is moveable to a first position to be through-hole mounted to the substrate. The ground contact is moveable to a second position that is different from the first position to be surface mounted to the substrate. An interface housing receives the connector sub-assembly. The interface housing has keying features to join to another connector. The interface housing is interchangeable with other interface housings having different keying features. A rear housing is coupled to the interface housing. The connector sub-assembly is captured between the interface housing and the rear housing. The rear housing is coupled to the substrate to secure the interface housing to the substrate. A ground clip is provided having coupling mechanisms to secure the interface housing to the rear housing.
The presently disclosed subject matter will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
The various embodiments provide an electrical connector, for edge mounting to a substrate, having a two-piece housing that allows for both surface mounting and through-hole mounting of the connector to the substrate. The two-piece housing includes an interface housing and a rear housing. The interface housing and the rear housing may be formed from plastic and enable the interface housing and the rear housing to be formed for one of surface mounting or through-hole mounting to a substrate of an electronic device. The housings retain a connector sub-assembly that is grounded to the substrate through at least one of ground pads or a through-hole mounted post. In one embodiment, a ground clip helps secure the interface housing to the rear housing. The ground clip may include a ground surface for grounding the connector to a chassis of the electronic device.
As shown in
The rear housing 112 is positioned proximate to the edge 102 of the substrate 104. The rear housing 112 is joined to the interface housing 106. The rear housing 112 is coupled to the substrate 104 to secure the interface housing 106 to the substrate 104. In the illustrated embodiment, the rear housing 112 includes posts 114 that is through-hole mounted through a rear housing aperture 116 of the substrate 104. The posts 114 are received in the rear housing aperture 116 through an interference fit to retain the rear housing 112 on the substrate 104. In other embodiments, the rear housing 112 may include any suitable mechanism for securing to the substrate 104. The posts 114 may also protrude through aperture 116 without an interference fit.
The connector sub-assembly 118 (shown in more detail in
In one embodiment, the connector 100 may also include additional retention features to secure the interface housing 106 to the rear housing 112. For example, the connector 100 may include a ground clip, as described below.
The retention features 132 extend from the top portion 128 of the rear housing. The lower portion 130 of the rear housing 112 includes an angled flange 136. The angled flange 136 corresponds to an angled flange 138 (shown in
A dielectric insert 146 is configured to be received in the mating portion 144. The dielectric insert 146 receives a center contact 148 that is insulated from the mating portion 144 by the dielectric insert 146. The center contact 148 forms a portion of the mating end 120 of the connector sub-assembly 118. A wire 150 extends from the center contact 148. The wire 150 may be coupled to the substrate 104 (shown in
The interface housing 106 includes an edge surface 156. The edge surface 156 is configured to abut the edge 102 (shown in
The angled flanges 138 are positioned proximate to a top 160 of the interface housing 106. The angled flanges 138 are configured to mate with the angled flanges 136 of the rear housing 112 (shown in
It should be noted that in some embodiments the ground posts 124 of the connector sub-assembly 118 may be utilized with the mounting surfaces 172 of the rear housing 112. Alternatively, the ground surfaces 172 of the connector sub-assembly 118 may be utilized with the posts 114 of the rear housing 112. Accordingly, the connector 100 can be configured with multiple mating interfaces and can provide space savings and the ability to have various distances between mating interfaces. The connector is also formed with interchangeable parts to enable various different interface housings 106 to be coupled to a rear housing 112 and a connector sub-assembly 118 configured for through-hole mounting or surface mounting.
In the illustrated embodiment, the rear housings 208 include posts 210 for through-hole mounting the rear housings 208 to a substrate (not shown). Likewise, the connector sub-assemblies 206 include ground posts 212 configured to be through-hole mounted into the substrate. Alternatively, the electrical connector 200 may include ground surfaces on the connector sub-assemblies 206 and/or mounting surfaces on the rear housings 208. In one embodiment, the electrical connector 200 may utilize any combination of ground posts 212, posts 210, ground surfaces, and/or mounting surfaces.
In the illustrated embodiment, the rear housing 306 includes a mounting surface 308 for surface mounting the rear housing 306 to a substrate (not shown). Likewise, the connector sub-assemblies 304 include ground surfaces 310 configured to be surface mounted into the substrate. Alternatively, the electrical connector 300 may include ground posts on the connector sub-assemblies 304 and/or posts on the rear housing 306. In one embodiment, the electrical connector 300 may utilize any combination of ground posts, posts, ground surfaces 310, and/or mounting surfaces 308.
A rear housing 414 is joined to the interface housing 402 to secure the connector sub-assembly 404 within the electrical connector 400. The rear housing 414 includes a slot 416 and coupling mechanisms 418. It should be noted that both the rear housing 414 and the connector sub-assembly 404 may be configured to be surface mounted and/or through-hole mounted to the substrate, as described above.
A ground clip 420 is positioned over the substrate end 408 of the interface housing 402 and the rear housing 414. The ground clip 420 includes coupling mechanisms 422 that receive the corresponding coupling mechanisms 412 and 418 of the interface housing 402 and the rear housing 414, respectively. In the illustrated embodiment, the coupling mechanisms 412 and 418 are formed as protrusions and the coupling mechanisms 422 are formed as openings configured to receive the coupling mechanisms 412 and 418. Optionally, the coupling mechanisms 412 and 418 may be formed as openings and the coupling mechanisms 422 may be formed as protrusions configured to be received in the coupling mechanisms 412 and 418. Alternatively, the coupling mechanisms 412, 418, and 422 may be formed as any corresponding coupling mechanisms.
The coupling mechanisms 412, 418, and 422 are configured to secure the interface housing 402 to the rear housing 414. For example, the ground clip 420 may facilitate preventing the interface housing 402 from separating from the rear housing 414 if a force, for example, a shear force is applied to the interface housing 402. The ground clip 420 may facilitate a stronger bond between the interface housing 402 and the substrate.
The ground clip 420 also includes an interface housing flange 424 and a rear housing flange 426. The interface housing flange 424 is received in the slot 410 of the interface housing 402. The rear housing flange 426 is received in the slot 416 of the rear housing 414. The flanges 424 and 426 are snapped into the respective slots 410 and 416 to further secure the ground clip 420 to the interface housing 402 and the rear housing 414.
The ground clip 420 also includes a ground surface 428. The ground surface 428 is configured to abut a chassis (not shown) of the electronic device in which the electrical connector 400 is positioned. For example, the ground surface 428 may directly abut the chassis. Alternatively, the chassis may include a ground spring (not shown) or the like that engages the ground surface 428. The ground surface 428 grounds the electrical connector 400 to the chassis of the electronic device. In one embodiment, grounding the electrical connector 400 to the chassis of the electronic device limits and/or prevents stray electromagnetic interference between the electrical connector 400 and other electrical components of the electronic device. In one embodiment, the connector sub-assembly 404 may also be ground to the substrate with a ground post and/or ground surface, as described above.
In the illustrated embodiment, an opening 430 is provided in the ground clip 420. The opening 430 extends through the ground surface 428. In one embodiment, the opening 430 provides access for soldering a center contact of the connector sub-assembly 404 to a wire or the like. The opening 430 may also provide access for inspecting a solder joint of the center contact. In one embodiment, the opening 430 enables heat to escape the electrical connector 400 either during soldering and/or operation.
A ground clip 520 is positioned over the interface housing 502 and the rear housing 514. The ground clip 520 includes coupling mechanisms 522 that receive the corresponding coupling mechanisms 512 and 518 of the interface housing 502 and the rear housing 514, respectively. The coupling mechanisms 512, 518, and 522 are configured to secure the interface housing 502 to the rear housing 514. For example, the ground clip 520 may facilitate preventing the interface housing 502 from separating from the rear housing 514 if a force, for example, a shear force is applied to the interface housing 502.
The ground clip 520 also includes an interface housing flange 524 and a rear housing flange 526. The interface housing flange 524 is received in the slot 510 of the interface housing 502. The rear housing flange 526 is received in the slot 516 of the rear housing 514. The flanges 524 and 526 are snapped into the respective slots 510 and 516 to further secure the ground clip 520 to the interface housing 502 and the rear housing 514.
The ground clip 520 also includes a ground surface 528 configured to abut a chassis (not shown) of the electronic device in which the electrical connector 500 is positioned to ground the electrical connector 500 to the chassis of the electronic device. In one embodiment, grounding the electrical connector 500 to the chassis of the electronic device limits and/or prevents stray electromagnetic interference between the electrical connector 500 and other electrical components of the electronic device.
In the illustrated embodiment, openings 530 are provided in the ground clip 520 to provide access for soldering a center contact of the connector sub-assemblies 504 to a wire or the like. The openings 530 may also provide access for inspecting a solder joint of the center contact. In one embodiment, the openings 530 enable heat to escape the electrical connector 500 either during soldering and/or operation.
A pair of ground clips 620 is positioned over the interface housing 602 and the rear housing 614. Each ground clip 620 is joined to a respective side 616 of the electrical connector 600. The ground clips 620 include coupling mechanisms 622 that receive the corresponding coupling mechanisms 612 and 618 of the interface housing 602 and the rear housing 614, respectively. The coupling mechanisms 612, 618, and 622 are configured to secure the interface housing 602 to the rear housing 614. For example, the ground clips 620 may facilitate preventing the interface housing 602 from separating from the rear housing 614 if a force, for example, a shear force is applied to the interface housing 602.
The ground clips 620 include ground surfaces 628 that are configured to abut a chassis (not shown) of the electronic device in which the electrical connector 600 is positioned. The ground surfaces 628 ground the electrical connector 600 to the chassis of the electronic device to limit and/or prevent stray electromagnetic interference between the electrical connector 600 and other electrical components of the electronic device.
An opening 630 is provided between the ground clips 620. The opening 630 provides access for soldering a center contact of the connector sub-assembly 604 to a wire or the like. The opening 630 may also provide access for inspecting a solder joint of the center contact. In one embodiment, the opening 630 enables heat to escape the electrical connector 600 either during soldering and/or operation.
It should be noted that in any of the above embodiments, the interface housing may be color coded based on keying features of the interface housing. Moreover, the rear housing may be color coded based on the rear housing being surface mountable or through-hole mountable. The embodiments described provide an electrical connector having various interchangeable parts. The interface housing may be interchangeable based on the desired keying features of the connector. The rear housing may be interchangeable to provide surface mounting or through-hole mounting. Additionally, the connector sub-assembly is stamped and formed so that the sub-assembly is configurable for through-hole mounting or surface mounting.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the invention without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the invention, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal languages of the claims.