The present invention relates to a sealing lock for an electrical connector. In this case the sealing lock can be in the form of a lock to create an air-tight and more importantly a fluid-tight connection.
Other types of sealing locks are known in the art. For example, sealing locks for electrical connectors may be disclosed in the following U.S. patents: U.S. Pat. No. 6,444,914 to Su issued on Sep. 3, 2002; U.S. Pat. No. 6,069,320 to Rocci et al issued on May 30, 2000; U.S. Pat. No. 4,571,018 to Annoot issued on Feb. 18, 1986; U.S. Pat. No. 4,590,329 to Potochnik et al issued on May 20, 1986; U.S. Pat. No. 3,956,575 to Sutherland issued on May 11, 1976; and U.S. Pat. No. 2,858,358 to Hawke issued on Oct. 28, 1958 wherein the disclosures of which are hereby incorporated herein by reference.
The invention relates to an electrical connector device comprising a body having teeth. There can also be an insert having two sides and at least two sets of teeth wherein a first set of teeth are disposed on a first side of the insert and a second set of teeth are disposed on a second side of the insert. The first set of teeth are for mating with the teeth on the body to form a substantially sealed connection between the insert and the body. There can be a sealing nut for securing over the insert and the body; the sealing nut may include a set of teeth and the sealing nut is screwed down onto the body. The set of teeth on the sealing nut may mate with the second set of teeth on the insert to form a substantially sealed connection between the sealing nut and the insert.
In this case, there can be a body that further comprises a plurality of threads. With this design, the sealing nut can further comprise a plurality of threads, wherein the sealing nut can be screwed on over the body via the threads. This device can also optionally further comprise a sealing gland. In one embodiment, the sealing gland can be coupled to the body between the insert and the sealing nut.
There can also be a spacer disposed inside of the body for spacing at least two wires apart from each other in the housing.
In one optional feature, the spacer can be in the form of a multi-pronged element having at least one channel disposed between at least two of these prongs.
Another optional feature is that the insert can comprise at least four sets of teeth, with at least two sets of teeth disposed on a first side, and at least two sets of teeth disposed on an opposite side of this insert.
Alternatively, this insert can comprise at least six sets of teeth, with at least three sets of teeth disposed on a first side and at least three sets of teeth disposed on an opposite side of this insert.
Once the sealing nut is screwed down on the body, the teeth from the sealing nut can mesh with the teeth on one side of the insert, while the teeth on the other side of the insert mesh with a set of teeth on the body to form a sealed connection. Before, during, or after this process occurs, the back open end of the connection opposite from the sealing nut can be filled with an epoxy element to fill a chamber inside of the body to form a sealed end.
One of the benefits of this device is that it creates a sealed connection between a plurality of wires so that these wires do not short out when they become wet, in addition, this device is designed to allow migration in either direction. The sealed connection can be created from the teeth meshing together to form a sealed enclosure.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It should be understood, however, that the drawings are designed for the purpose of illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Turning now in detail to the drawings,
In this case, there is the device 10 which includes a sealing nut 20, a sealing gland 30, an insert 40, and a body 50 wherein these components can all be fit together to for a fluid tight seal such as a fluid tight seal.
With this design, the sealing nut can be in the form of a substantially cylindrical sealing nut having a curved top 21, a hollowed center 25, a side wall having ridges 23, and at least three sets of teeth 22, 24, and 26 disposed around a back face 27. There is also a front face 29 which is open at its end to allow the hollowed center to extend from the back face 27 to the front face 29.
There is also a sealing gland 30 which can be in the form of a flexible device which fits underneath sealing nut 20. Sealing gland 30 is shown in greater detail in
Finally, there is a connection body or body 50 which is shown in greater detail in
The device is sealed so that as nut 20 is screwed down on body 50, sealing gland 30 is compressed and then expands laterally out as shown in
Alternatively,
Thus, the device in its at least two embodiments can be used to form a fluid tight seal at both ends so that no fluid or substantially no fluid enters the connection to short out the connection. This type of device has numerous advantages based upon its features. For example, the epoxy or sealant element 90 can be used to prevent fluid such as fluid from wicking in or entering into the connection from a region outside of the wires.
Alternatively, the soldering point in the soldered joint 72c, 74c, 76c can be used to stop the wicking or flow of fluid into the joint or across the joint from inside of the shielded cable. For example if outside of this connection element or device, a shielding of the cable is punctured, fluid or other fluid can wick or flow inside of this connection and cross over an unsoldered connection into an electrical device. However, because of soldering connections 72c, 74c, and 76c at spreader 60, the lump or protrusion formed from the solder, stops the flow of fluid from progressing inside of this connection.
In addition, the teeth of this device can be designed so that as nut 20, 120 is screwed down on either insert 40, 140 or alternatively body 50, 150 these teeth slide over each other in the tightening rotational movement, but once nut 20, 120 has been tightened, these teeth on nut 20, 120 lock with the teeth on insert 40, 140 in the first embodiment. In this embodiment as well, the teeth of insert 40, 140 also lock against body 50, 150 so that during the tightening phase, the teeth points are pointing away from the direction of rotation but once the device is tightened, these teeth points lock into recesses formed from the opposite complementary teeth on body 50, 150 so that during an un-tightening phase, the teeth points lock into the corresponding recesses to cause a lock of the nut. Alternatively, in another embodiment, the teeth from nut 20, 120 can lock directly with the teeth on body 50, 150 so that nut 20, 120 cannot be unscrewed from its tightened condition without breaking the teeth and/or the nut or body.
In addition, a method to prevent the wicking of fluid in an electrical connection has also been disclosed. For example, this method can include, first the soldering or electrical connection of at least two wires adjacent to a spacer 60 which is positioned inside of a body. Next, an optional insert can be slid down adjacent to this body 50, 150. A Sealing gland or gasket 30, 130 can be placed over or adjacent to this insert 40, 140 while a threaded nut 20, 120 is screwed down onto body 50, 150 to compress sealing gland 30, and to press insert 40, 140 into both nut 20, 120 and body 50, 150. As threaded nut 20, 120 is tightened down, the teeth points on for example, teeth 142 associated with nut 120, point in a direction opposite of rotation of nut 120 as it is being tightened. However, the corresponding or complementary teeth points of optional insert 140 in the form of for example, teeth 142 are pointed in the direction of rotation nut 120. Thus, teeth 122 slide over teeth 142 as nut 120 is being tightened down. Once nut 120 is fully tightened, teeth 122 lock with teeth 142 so that teeth points on teeth 122 dig into teeth 142 so that a user cannot untighten or counter rotate nut 120 from insert 140 without breaking either the teeth or the entire element. Additionally, as nut 120 is being tightened down, insert 140, having oppositely spaced teeth 144 locks into body 150. For example, teeth 144 has teeth points which point in a direction opposite of the direction of rotation of insert 140 as nut 120 is being tightened down on body 150. In addition, body 150 has teeth 156 which have teeth points which point in the direction of rotation of insert 140 as nut 120 is being tightened down. Teeth 144 therefore slide over teeth 156 during the tightening stage. However as described above, once nut 120 is fully tightened, teeth 144 lock into teeth 156 with the teeth points locking the teeth against an untightening or counter rotation. This feature then causes the entire device to be locked against an untightening rotation which may result in an unfortunate opening in the connection. Therefore this design prevents this occurrence.
Next, an epoxy or any other known sealant material is injected or inserted into an open end of body 50, which forms an open connection end. This epoxy can be inserted into open end 59 and extend all the way up to opposite open end 58 to form an entirely sealed container. Once the epoxy hardens, the entire device is substantially or entirely sealed against wicking, leakage, or seepage of fluid into the connection.
Accordingly, while a few embodiments of the present invention have been shown and described, it is to be understood that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention as defined in the appended claims.