This application claims priority to Taiwan Application Serial Number 106217029, filed Nov. 15, 2017, which is herein incorporated by reference.
The present invention relates to an electrical connector structure. More particularly, the present invention relates to an electrical connector that is capable of adjusting high-frequency signal transmission.
With the rapid development of technology, the amount of data transmission increases accordingly, and thus conventional transmission devices cannot meet the current high efficiency requirements. An early Small Computer System Interface (SCSI) has been modified to become a current Serial Attached SCSI (SAS) which has broken through the upper limit of the original transmission speed. The SAS technology continues to improve in research and development, and thus the transmission speed is increased to 24.0 Gbps, in which the SAS technology that supports and is compatible with Serial Advanced Technology Attachment (SATA) has a common and wide range of advantages.
In order to achieve the convenience of portability and to meet the requirements of thinness and shortness, components are designed to be miniaturized, and an electrical connector tends to be smaller. In order to prevent serious signal attenuation, a signal source transmits messages at a higher frequency band when the electrical connector is in the process of signal transmission. Due to the miniaturization design of the electrical connector, gaps between adjacent terminals transmitting signals are greatly shortened. Because transmitting signals at use the high-frequency frequency band, the two adjacent terminals are highly susceptible to mutual high-frequency noise interference, such as cross talk, impedance, propagation delay, propagation skew, and attenuation, thus causing the signal transmission process to be distorted or have errors, greatly reducing the transmission efficiency of the electrical connector.
In order to overcome the interference problem between the terminals, various connectors on the market are designed with metal grounding parts, in which the metal grounding parts are formed by stamping and bending, and are disposed in the connector. To reduce high-frequency interference between the signal terminals, grounding terminals are connected by the metal grounding parts. However, contact surfaces between the metal grounding parts and the grounding terminals may have gaps or different surface areas, thus resulting in poor grounding effects. In addition, the metal grounding parts require additional manufacturing processes, thus increasing the manufacturing cost and the production time. Therefore, these conventional connectors still need to be improved.
U.S. Pat. No. 9,281,589 provides a solution. Referring to
It can be seen from the above description that the conductive glue D is disposed on the outer surface of the insulation casing E located away from the chamber E3. The method of fixing the conductive glue D is to fill the groove B with the conductive glue D in a liquid state, and when the conductive glue D is cured, the conductive glue D is adhered to the groove B. The material composition of the insulation casing E is different from that of the conductive glue D, and the conductive glue D is fixed on the surface of the insulation casing E after the insulation casing E is formed. Because the groove B and the through holes B1 in the insulation casing E do not have designs for preventing the conductive glue D from falling off, the conductive glue D is very likely to fall off from the surface of the insulation casing E after the connector A has been used for several times, thus causing the connector A to have an incomplete structure which affects the quality and stability of signal transmission.
Since the conventional connectors have the defects affecting the transmission quality when the high-frequency signal is transmitted and cannot meet the actual industrial requirements, in order to improve the transmission quality and maximize the efficacy of the connector, an improvement for the structure of the connector design to solve the problem is greatly needed.
The aspect of this disclosure is to design an electrical connector, in which the electrical connector includes conductive terminals forming terminal groups. The conductive terminals includes signal terminals and grounding terminals, in which each of the conductive terminals comprises a contact portion, a soldering portion, and a main portion connecting the contact portion and the soldering portion. An insulation body is fixed to each main portion of the conductive terminals of at least one terminal group. The insulation body has openings exposing corresponding grounding terminals. A conductive glue fills the openings of the insulation body, and the conductive glue electrically connects the grounding terminals. The grounding terminals are shorted through the conductive glue to enhance the shielding effect of the grounding terminals between the signal terminals and to reduce the crosstalk between the signal terminals.
Another aspect of this disclosure is to design an electrical connector, in which conductive terminals are disposed in terminal slots of an insulation casing, and the conductive glue is sandwiched between the insulation bodies and the insulation casing. The conductive glue is fixed in a groove of the insulation body by using the insulation casing, such that the conductive glue is firmly fitted to the insulation body. The conductive glue filling the openings is electrically connected to the grounding terminals, thereby preventing the conductive glue from falling off, thus maintaining the quality of signal transmission.
This disclosure provides an electrical connector to achieve the above objects. The electrical connector includes conductive terminals including signal terminals and grounding terminals, in which each of the conductive terminals includes a contact portion, a soldering portion, and a main portion connecting the contact portion and the soldering portion, and the conductive terminals include a first terminal group and a second terminal group. Insulation bodies includes a first insulation body and a second insulation body, in which the first insulation body is fixed to each main portion of the first terminal group, the second insulation body is fixed to each main portion of the second terminal group, and the insulation bodies has openings exposing the corresponding grounding terminals. A conductive glue is fixed in the openings of the insulation bodies such that the grounding terminals are electrically connected to each other. An insulation casing includes a first side wall, a second side wall and a bottom defining a abutting cavity, in which the first side wall and the second side wall are respectively located on two sides of the abutting cavity which are not adjacent to each other; the side walls includes terminal slots; the terminal slots include first terminal slots disposed on the first side wall and second terminal slots disposed on the second side wall; the bottom has at least one notch communicating with the terminal slots; the first terminal group is disposed on the first terminal slots of the first side wall; the second terminal group is disposed on the second terminal slots of the second side wall; and the insulation bodies are fixed to the notch corresponding to the bottom.
In order to further understand the features, characteristics and technical contents of this disclosure, refer the following detailed description of the disclosure and the accompany drawings. However, the accompany drawings are provided for reference only and are not to limited the present disclosure.
The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
As shown in
In an embodiment of the present disclosure, as shown in
The electrical connector 1 is used for transmitting high-frequency signals. If the conventional transmission structure is adopted, cross talk and other high-frequency interference problems are likely to occur between two adjacent signal terminals 21, thus affecting the accuracy and efficiency of signal transmission. In order to overcome this problem, the signal terminals 21 transmit high-frequency signals by specifically using differential signal pairs. Each of the differential signal pairs use two signal terminals 21 to transmit the differential signal at the same time, in which the amplitude of the two signals of the differential signal is the same, but the phases thereof are opposite, such that interference can be effectively canceled. With this data transmission method, electromagnetic interference can be effectively suppressed and timing sequence is accurate, thereby improving the quality and efficiency of signal transmission. In order to avoid interference between two pairs of differential signal terminals, the grounding terminals 22 are respectively designed on two outer sides of the differential signal terminal pair, and the grounding terminals 22 separate the two adjacent sets of the differential signal terminal pairs. The grounding terminals 22 can absorb and ground the interference noise generated by the differential signal terminal pairs, and can effectively shield the differential signal terminal pairs from interference. Therefore, the conductive terminals 2 are arranged in the order of ground-signal-signal-ground (G-S-S-G), so as to achieve better high frequency signal transmission efficiency.
In the embodiment of the present disclosure, the insulation bodies 3 are respectively fixed to the main portions 24 of at least one terminal group by insert molding. In this embodiment, the insulation bodies 3 include a first insulation body 34 and a second insulation body 35. The first insulation body 34 is fixed to each main portion 24 of the conductive terminals 2 of the first terminal group 26. The second insulation body 35 is fixed to each main portion 24 of the conductive terminals 2 of the second terminal group 27. The insulation bodies 3 have openings 31. The openings 31 may or may not pass through the insulation bodies 3. The openings 31 respectively expose the grounding terminals 22 covered by the insulation bodies 3. The insulation bodies 3 have at least one channel 32, and the channel 32 is a groove structure formed on the surfaces of the insulation bodies 3. The openings 31 are respectively located on the surface of the insulation body 3 in the channel 32. At least one surface of each insulation body 3 includes the openings 31 and the channel 32. The channel 32 includes parallel sections 321 and a vertical section 322. The openings 31 are respectively located in the parallel sections 321, and each opening 31 is corresponding to a parallel section 321, and the parallel section 321 is parallel to the extending direction of the conductive terminals 2. The vertical section 322 is connected to the parallel sections 321, and the vertical section 322 is perpendicular to the extending direction of the conductive terminals 2. The insulation bodies 3 have the parallel sections 321 and the vertical section 322 to increase the contact surface are of the channels 32, thereby enhancing the bonding strength between the conductive glue 4 and the insulation bodies 3.
In the embodiment of the present disclosure, referring to
The conductive glue 4 is mainly composed of matrix resin, conductive filler and dispersant. The matrix resin may include an adhesive system such as an epoxy resin, an organic silicone resin, a polyimide resin, a phenol resin, a polyurethane, an acrylic resin, etc. The conductive filler may include powders of Au, Ag, Cu, Al, Zn, Fe, Ni, and Graphite, and the conductive filler is composed of one or more of the aforementioned elements and some conductive compounds. The particle size of the conductive filler powder has to meet the appropriate size that can be added to the matrix resin and can be allowed a dispersant to be added therein, such that the conductive filler powder may be evenly distributed in the matrix resin to achieve the effect of uniform conductivity. The curing temperature of the conductive glue 4 is generally lower than the soldering temperature. The conductive glue 4 can be used to replace solder, thereby reducing the damage of the electronic components caused by the high temperature of the soldering operation, and the technology of using the conductive glue 4 is simple and easy to be operated, thereby improving the production efficiency.
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
In the embodiment of the present disclosure, referring to
The length of the second partition walls 582 is shorter than the first partition walls 581. The length of the second partition walls 582 is about one-third of the length of the first partition walls 581. Each second partition wall 582 includes a passageway 584, and the passageways 584 are located between the second partition wall 582 and the insulation body 3. The passageways 584 allow the space of the terminal slots 57 on two sides of each of the second partition walls 58 to communicate with each other. Through the passageways 584, the grounding terminals 22 can absorb and shield the noise and interference generated when the signal terminals 21 transmit high-frequency signals. Although the high-frequency signals transmitted by the two signal terminals 21 of the same differential signal terminals pairs have the same amplitudes, yet due to the opposite phases, the mutual interference can be effectively canceled. However, high-frequency interference still exists between the two differential terminal signal pairs. Therefore, the passageways 584 of the second partition walls 582 between the two differential signal terminal pairs expose the grounding terminals 22, respectively. The grounding terminals 22 absorb the noise and interference generated by the signal terminals 21, so as to reduce high-frequency interference between multiple pairs of differential terminal signal pairs and achieve better transmission quality of the electrical connector 1. The grounding terminals 22 are electrically connected to each other by using the conductive glue 4 so that the potential of each grounding terminal 22 is consistent.
In the embodiment of the present disclosure, the front end of the contact portion 23 of each conductive terminal 2 exerts a force on each of the supporting plates 59 corresponding to the first sidewall 51 and the second sidewall 52. The front ends of the contact portions 23 are constrained to the supporting plate 59, such that the contact portions 23 can only be elastically deformed in the direction opposite to the supporting plate 59, thus causing the contact portions 23 to be stressed by a pre-load provided by supporting plates 59 when the contact portions 23 are not docked with the docking device. When the electrical connector 1 is docked with the docking device, the contact portions 23 of each of the conductive terminals 2 can output a larger positive force, such that each of the contact portions 23 of the conductive terminals 2 and the docking device are connected closer with each other, thereby further stabilizing the signal transmission of the electrical connector 1.
Compared with the prior art, the present disclosure provides a further improvement on the design of the conductive terminals 2 of the electrical connector 1 for transmitting high-frequency signals. The ground terminals 22 are electrically connected to each other so that the potential of the grounding terminals 22 to reach consistent. Many connectors use metal grounding plates to connect the grounding terminals inside conventionally, and there may be large gaps between the grounding terminals and the metal grounding plates, thus affecting the grounding effect, causing the potential of the ground terminals to be inconsistent, and the metal grounding plates require additional process and consume more time and cost. In addition to the design of the metal grounding plate, the conventional connector also has the design of forming holes on the surface of the insulating casing into the conductive glue, in which the conductive glue is likely to fall off after the connector has been used repeatedly. In order to ensure the stability of the connector, the present disclosure uses the conductive glue 4, the insulation body 3, and the insulation casing 5 to achieve the purpose of connecting the conductive terminals 2 and fixing the conductive glue 4. Since technique of connecting the grounding terminals 22 of the conductive glue 4 is simple, the conductive glue 4 fills the openings 31 and the channel 32 of each insulation bodies 3 in a liquid state, and the grounding terminals 22 are respectively exposed to the openings 31. After the conductive glue 4 is cured, the grounding terminals 22 are electrically connected by conductive glue 4, the potentials of the grounding terminals 22 reach consistent, and the noise generated by the signal terminals 21 is shielded, and the insulation bodies 3 are touched closely to the insulation casing 5 each other, respectively. The conductive glue 4 is stably sandwiched between the insulation bodies 3 and the insulation casing 5 to prevent the conductive glue 4 from falling off caused by the repeated use of the electrical connector 1 and to provide the better reliability of the electrical connector 1 and further solve the problem of high frequency interference between the differential signal terminal pairs of the electrical connector 1.
Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
106217029 | Nov 2017 | TW | national |