The present invention relates to an electrical connector, and more particularly to an electrical connector that has a structure to increase a creepage distance between a negative terminal and a positive terminal of the electrical connector.
Generally, battery replacement is to continue supplying power to an electrical motorcycle. The battery and the electrical motorcycle are connected with each other via two corresponding connectors respectively mounted in the battery and the electrical motorcycle and detachably connected with each other. With reference to
Lower ends of the negative terminal 81 and the positive terminal 82 are electrically isolated from each other via the connector base 80. An annular gap is formed between upper ends of the negative terminal 81 and the positive terminal 82. An insulating cap 90 is disposed in the annular gap to ensure that the upper ends of the negative terminal 81 and the positive terminal 82 are also electrically isolated from each other. With reference to
When the insulating cap 90 is inserted into the annular gap between the negative terminal 81 and the positive terminal 82. The catching pieces 92 are compressed to decrease the spaces therebetween, so the engaging protrusions 920 near the bottom of the catching pieces 92 can easily pass through the hole flange 810 of the negative terminal 81. After the engaging protrusions 920 have passed through the hole flange 810, the catching pieces 92 are released, and the engaging protrusions 920 engage with the hole flange 810 of the negative terminal 81 to complete assembly of the insulating cap 90. Because the insulating cap 90 is served as an insulating medium between the negative terminal 81 and the positive terminal 82, its specification must meet the standard safety specification requirements.
National Standard of People's Republic of China GB 24155-2020 “Safety specifications for electric motorcycles and electric mopeds” defines specifications for creepage distance and electrical clearance of the charging interface. The creepage distance related to storage battery should meet specifications as follows:
1. A creepage distance d1 between connection terminals of the storage battery is determined according to formula (1) below, wherein unit of the creepage distance d1 is millimeter:
d1≥0.25U+5 (1)
2. A creepage distance d2 between live part and charging platform is determined according to formula (2) below, wherein unit of the creepage distance d2 is millimeter:
D2≥0.125U+5 (2)
U defined in aforementioned formulae (1) and (2) is a maximum working voltage between two output terminals of the storage battery, wherein unit of the working voltage is volt.
In addition, an electrical clearance between conductive parts should not be smaller than 2.5 millimeters.
Measurements of the electrical clearance and the creepage distance are as shown in
According to above mentioned requirements of the safety specifications, a creepage distance of the electrical connector from the negative terminal 81 to the positive terminal 82 along the insulating cap 90 being the insulating medium must meet the above mentioned requirement of the safety specifications. However, as shown in
Accordingly, the conventional electrical connector cannot meet the safety requirement for the creepage distance. A solution for this issue is needed.
To overcome the shortcomings, the present invention provides an electrical connector to mitigate or obviate the aforementioned problems.
The main objective of the present invention is to provide an electrical connector that has a special insulating cap and assembling structures to increase a creepage distance between a positive terminal and a negative terminal of the electrical connector to meet the requirement for safety specifications.
To achieve the foregoing purpose, the electrical connector comprises a test terminal, a positive terminal, and a negative terminal coaxially mounted in a connector base and electrically isolated from one another, and an insulating cap mounted between the positive terminal and the negative terminal. The test terminal is disposed in an axis of the connector base and has an upper end and a lower end. The positive terminal is tubular, surrounds the test terminal, and has an upper end and a lower end. The negative terminal is tubular, surrounds the positive terminal, and has an upper end and a lower end. An annular gap is formed between the upper end of the negative terminal and the upper end of the positive terminal for mounting the insulating cap.
The insulating cap has a cap portion, a ring body extending downwardly from a bottom of the cap portion, and an annular groove coaxially formed in a top of a surface of the cap portion, longitudinally extending into the ring body, and is kept from extending through a bottom of the ring body. A pair of turning engaging parts is formed between the ring body of the insulating cap and an internal surface of the negative terminal and the turning engaging parts are engaged with each other by turning the insulating cap relative to the negative terminal to assemble the insulating cap in the annular gap between the negative terminal and the positive terminal by turning the insulating cap.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
With reference to
In the embodiment, the connector base 10 is cylindrical, is made of an insulation material, and has a bottom portion, an external ring 11, and an internal ring 12, wherein the external ring 11 and the internal ring 12 extend vertically and upwardly from the bottom portion of the connector base 10 coaxially. Multiple connecting ribs 13 are formed between the external ring 11 and the internal ring 12. The test terminal 20 is disposed in an axis of the connector base 10. A lower end of the test terminal 20 is fixed in the bottom portion of the connector base 10, and an upper end of the test terminal 20 is coaxially located inside the internal ring 12.
The positive terminal 30 is tubular, has an internal diameter larger than an external diameter of the test terminal 20, coaxially surrounds the test terminal 20, and is located between the test terminal 20 and the internal ring 12 of the connector base 10. A lower end of the positive terminal 30 is fixed in the bottom portion of the connector base 10. An upper end of the positive terminal 30 is coaxially located inside the internal ring 12.
With reference to
With reference to
In addition, a pair of turning engaging parts is formed between the ring body 52 of the insulating cap 50 and the internal surface of the negative terminal 40 and the turning engaging parts are engaged with each other by turning the insulating cap 50 relative to the negative terminal 40 to assemble the insulating cap 50 in the annular gap 14 between the negative terminal 40 and the positive terminal 30 by turning the insulating cap 50 relative to the negative terminal 40. The ring body 52 has an internal diameter corresponding to the external diameter of the positive terminal 30 in size for the ring body 52 to surround and be sleeved on the positive terminal 30. The pair of the turning engaging parts comprises at least one engaging block 521 radially formed on an external annular surface of the ring body 52 and located near the bottom of the ring body 52 and at least one blocking protrusion 41 radially formed on the internal surface of the negative terminal 40.
In the embodiment, two said engaging blocks 521 are formed on the external annular surface of the ring body 52, are located near the bottom of the ring body 52, and are diametrically opposite each other. Two said blocking protrusions 41 respectively correspond to the two engaging blocks 521 in position, are formed on the internal surface of the negative terminal 40, and are diametrically opposite each other. The two said blocking protrusions 41 are located near an opening of the negative terminal 40. Gaps 42 are formed between respective adjacent ends of the two said blocking protrusions 41, and each of the gaps 42 has a width being larger than a length of each of the engaging blocks 521 for each of the engaging blocks 521 to pass through the gap 42.
After the engaging blocks 521 near the bottom of the ring body 52 of the insulating cap 50 are aligned with the gaps 42 located near the opening of the negative terminal 40, the insulating cap 50 is moved down to insert in the annular gap 14 between the negative terminal 40 and the positive terminal 30, and then the insulating cap 50 is rotated at an angle to turn the engaging blocks 521 near the bottom of the ring body 52 to locate below the blocking protrusion 41 near the opening of the negative terminal 40. With reference to
To exactly rotate the insulating cap 50 at a specified angle to fix the insulating cap 50, a start mark 511 is formed in an edge of the cap portion 51 and is located at a position corresponding to the second end of one of the engaging blocks 521, and an end mark 512 is formed in the edge of the cap portion 51 at a position corresponding to an outer position with respect to the engaging block 521 opposite to the first end thereof and is spaced apart from the second end thereof. An angle formed between the end mark 512 and the start mark 511 is smaller than an angle formed between the first end and the second end of each of the engaging blocks 521. A position mark 43 is formed in the external surface of the negative terminal 40 and is located at a position corresponding to an end of one of the gaps 42. The position mark 43 corresponds to the start mark 511 in the cap portion 51 in position.
To mount the insulating cap 50 in the annular gap 14 between the negative terminal 40 and the positive terminal 30, the start mark 511 in the cap portion 51 is aligned with the position mark 43 in the external surface of the negative terminal 40, and then the insulating cap 50 is inserted in the annular gap 14 and is rotated to turn the end mark 512 to align with the position mark 43 in the external surface of the negative terminal 40 as shown in
With reference to
With reference to
As mentioned above, the annular groove 510 is coaxially formed in the surface of the insulating cap 50 mounted between the negative terminal 40 and the positive terminal 30 and is coaxially located between the negative terminal 40 and the positive terminal 30. The surface of the cap portion 51 of the insulating cap 50 is the insulation surface between the negative terminal 40 and the positive terminal 30. Because of the annular groove 510, the insulation surface between the negative terminal 40 and the positive terminal 30 is increased. Therefore, the creepage distance between the negative terminal 40 and the positive terminal 30 is greatly increased to meet the standard requirement of safety specifications.
Number | Date | Country | Kind |
---|---|---|---|
110134083 | Sep 2021 | TW | national |