The present disclosure relates to an electrical connector, and more particularly to an electrical connector can be assembled conveniently.
A wide range of electrical connectors in electronics are used for data transmission, data storage or image display, such as from the earlier conventional ATA (Advanced Technology Attachment) to SCSI (Small Computer System Interface), SATA (Serial Advanced Technology Attachment) and the more recently SAS interface (serial SCSI, Serial Attached SCSI). For many emerging applications with high speed data transmission, serial communication technology can solve the performance bottleneck problem of traditional parallel technology, serial attached SCSI (SAS) is the development of parallel SCSI based on serial technology, and has an advantage of higher signal transmission rate, and also compatible with SATA drive, in addition, SAS has a smaller profile than SCSI.
SAS connector mainly supports for high-speed serial signal transmission and power supply, and is generally adopted with enhanced design, that can be used in compact storage applications to achieve a higher reliability, as the overall size of the SAS connector is small, so contacts are not easy to be assembled into a housing of the SAS connector.
It is desirable to provide an improved electrical connector for solving above problems.
In one aspect, the present invention includes an electrical connector. The electrical connector includes an insulative housing being elongated and two contact modules assembled into the insulative housing. The insulative housing has a bottom mounting portion and a mating portion extending upwards from the mounting portion, the mounting portion has a cavity opening downwardly, the mating portion has a central mating space extending along a lengthwise direction and a pair of side walls on both sides of the mating space, and a plurality of contact receiving passageways defined on each side wall and communicated with the cavity along a height direction. The contact modules assembled into the insulative housing from a lower side of the mounting portion along a down-to-up direction, and each contact module having an insulator received in the cavity and a plurality of contacts insert-molded in the insulator, each contact defining a contacting arm projecting upwards into the relative contact receiving passageway and a soldering portion extending downwards to be exposed out of the relative insulator. The insulative housing defines a pair of locating portions extending downwards from two sides of the mounting portion, the distance between the pair of locating portions is smaller than an internal diameter of the cavity along the lengthwise direction, and a pair of demising slots are formed on an interior side of each locating portion for the contact modules passing through.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
The components in the drawing are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the described embodiments. In the drawings, reference numerals designate corresponding parts throughout various views, and all the views are schematic.
Reference will now be made to the drawing figures to describe the embodiments of the present disclosure in detail. In the following description, the same drawing reference numerals are used for the same elements in different drawings.
Referring to
Referring to
The mating portion 12 has a central mating space 120 extending along the lengthwise direction and a pair of side walls 121 on both sides of the mating space 120. A plurality of contact receiving passageways 122 are defined on each side wall 121 and communicated with the cavity 110 along a height direction. The contact receiving passageways 122 on a same side wall 121 are arranged in a row along the lengthwise direction, and two rows of the contact receiving passageways 122 are opposite to each other along a direction perpendicular to the lengthwise direction.
The insulative housing 1 is further provided with a pair of locating portions 13 at two sides thereof, and the locating portions 13 extends downwards from the mounting portion 11, the distance between the pair of locating portions 13 is smaller than an internal diameter of the cavity 110 along the lengthwise direction. Each locating portion 13 is of T-shaped, and comprises a semicircular column 131 on the outside thereof and an extension portion 132 extending from the semicircular column 131 into the cavity 110, the semicircular column 131 has an outward arc surface and an inward plane. The extension portion 132 extends from the inward plane of the semicircular column 131 towards the interior of the cavity 110, and has an inner surface 1321 facing towards the opposite locating portion 13. In addition, a pair of demising slots 133 are formed on two sides of the extension portion 132 for the contact modules 2 passing through.
The two contact modules 2 are assembled into the insulative housing 1 from a lower side of the mounting portion 11 along a down-to-up direction, and each contact module 2 has an insulator 21 received in the cavity 110 and a plurality of contacts 22 insert-molded in the insulator 21. The insulator 21 defines a pair of bumps 211 locking with the latching slots 112 and a block 212 engaging with the limiting slot 113. The bumps 211 are close to an upper surface of the insulator 21, and the block 212 are defined near a lower surface of the insulator 21, thus to form a stagger relationship along an up-and-down direction.
Each insulator 21 has a pair of cutouts 213 on both ends thereof along the lengthwise direction, and the cutouts 213 are correspondingly arranged with the extension portions 132. A first upright surface 2131 perpendicular to the lengthwise direction and a second upright surface 2132 vertical to the first upright surface 2131 are connected with each other to form one cutout 213. The inner surface 1321 of the extension portion 132 is located outside of the corresponding first upright surface 2131. While the contact modules 2 assembled in the cavity 110, the cutouts 213 on both sides of the insulator 21 can prevent the contact modules 2 from being stopped by the extension portions 132.
One insulator 21 of the two contact modules 2 defines a protrusion 214 on the surface opposite to another insulator 21 matching with a positioning slot 215 on the another insulator 21. In the preferred embodiment of the present invention, each insulator 21 has one protrusion 214 projecting towards the opposite insulator 21 and one positioning slot 215 receiving the opposite protrusion 214 on the opposite insulator 21, and the protrusion 214 and the positioning slot 215 are spaced apart from each other with a certain distance. The protrusion 214 has a plurality of ribs 2141 extruding outwards, and the ribs 2141 are distributed evenly on the peripheral surface of projection 214, each rib 2141 has a gradually varied thickness along a radial direction of the protrusion 214. The positioning slot 215 has a gradually contracted configuration along a direction away from the corresponding insulator 21.
Referring to
In assembly, the contacts 22 are insert-molded in the corresponding insulator 21 to form the contact module 2, the two contact modules 2 are assemble to each other, and the protrusion 214 of one insulator 21 is inserted into and matching with the positioning slot 215 of another insulator 21, until two opposite surfaces of the insulators 21 are intimately confronted with each other, therefore the two contact modules 2 are assembled together. Then the two contact modules 2 are assembled to the insulative housing 1 from the mounting portion 11 of the insulative housing 1 along a down-to-up direction, and the locating portions 13 are inserted into the corresponding cutouts 213 on two sides of the insulators 21, and exposed out of the lower surface of the insulator 21, the two insulators 21 are accommodated in the cavity 110. The bumps 211 and the blocks 212 on lateral sides of the contact modules 2 are matching with the latching slots 112 and the limiting slots 113 respectively, and the contacts 22 are inserted into the relative contact receiving passageways 122, thus the electrical connector 100 has a simple structure with a convenient insertion and assembling of contact modules 2.
Referring to
The second lateral wall 32 comprises a main portion 321 parallel to the side portions 311 and a bottom segment 322 bent from a lower edge of the main portion 321. The second lateral wall 32 has a strip connecting portion 323 on a lower end of the bottom segment 322 for connecting with a strip (not shown) and a pair of soldering legs 324 extending downwards from the lower end of the bottom segment 322. The strip connecting portion 323 is defined outside of the soldering legs 324, the two tail sections 315 of the first lateral wall 31 is located between the two soldering legs 324 of the second lateral wall 32 along the lengthwise direction.
The extrusion 312 of the first lateral wall 31 has a pair of through holes 3121, and the second lateral wall 32 also has a pair of through holes 3211 in an area corresponding to the extrusion 312. The middle section 313 defines at least one resilient portion 3131 extending inwards to contact with the insulative housing 1 for a orientation therebetween, and the second lateral wall 32 also has at least one resilient portion 325 extending inwards to contact with the insulative housing 1. And in the preferred embodiment of present invention, the middle section 313 has a resilient portion 3131, and the second lateral wall 32 has a pair of resilient portion 325, the resilient portion 3131 of the middle section 313 is located between the pair of resilient portions 325 of the second lateral wall 32 along the lengthwise direction, and in middle of the two resilient portions 325. Upper ends of the resilient portions 3131, 325 are free ends, and extending towards the interior of the shielding member 3.
In present invention, the shielding member 3 of the electrical connector 100 has the extrusion 312 on one side thereof, and the joint 34 is defined on a same side of the shielding member 3 as the extrusion 312, and located on an outer side of the extrusion 312, thus the strip connecting portion 323 can be defined conveniently, and the extrusion 312 can be easy to be bent.
It is to be understood, however, that even though numerous characteristics and advantages of preferred and exemplary embodiments have been set out in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only; and that changes may be made in detail within the principles of present disclosure to the full extent indicated by the broadest general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201610397755.9 | Jun 2016 | CN | national |
201620546556.5 | Jun 2016 | CN | national |