The invention generally refers to a connector with a housing, with terminals, with conductors that are connected with the terminals, with a guidance element for the conductors.
In the state of the art, there are several types of connectors known. U.S. Pat. No. 5,244,407 discloses a multi-piece connector backshell assembly with internal supports. A connector backshell assembly for wires or crackshell cables is provided in which a body and a cover define a housing therefore. An internal support member is mounted within the housing in the form of a split support which secures the wires or cables therebetween. A connector is mounted to the housing at the forward end thereof, whereby the connector electrically engages wires or crackshell cables. An exit clamp member mounted to such a body proximate the aft end thereof, which defines a wide-exit window, is provided for further securing such wires or crackshell cables as they exit the housing to thus provide double conductive member support and strain relieve where such conductive members engage the connector, for example when the conductive member or members are bent or twisted relative to the connector backshell assembly.
The U.S. Pat. No. 4,832,616 discloses an electrical connector with a conductor seal lock. The electrical connector comprises a connector body having a plurality of longitudinal cavities which include rearward sealing portions, terminals disposed in the cavities and attached to conductors which extend out of the rearward sealing portions of the cavities and elastomeric seal sleeves for sealing the conductor and the electric connector. A conductor seal lock attached to the conductor end of the connector body has towers coaxially disposed on the conductors and actually compressing the elastomeric seal sleeve to ensure full insertion of the terminals and the accurate position of the terminals in the cavities.
The German patent application DE 4015793 A1 discloses a connector with a double sealing arrangement against dust and water, whereby the connector comprises two sealing sleeve parts that are arranged at least at two connector terminals to seal the terminals. The connectors additionally comprise a sealing cover arranged at a cable fixing that fastens the cables that are connected with the terminals to seal the cables twofold.
The object of the invention is to provide an improved connector with an improved fastening of the conductors.
The object of the invention is attained by the connector as disclosed in claim 1. One advantage of the connector is to provide an improved fastening of the conductor that results in transmitting less movement and forces to terminals that are connected with the conductors.
A further advantage of the invention is to provide a simple structure of the connector with an improved guiding of the conductors. The objects of the invention are attained by providing an elastic element between the conductors and the guidance element. The guidance elements provide the guidance function and the elastic element provides the elastic fastening of the conductors. The elastic fastening of the conductors results in an improved protection of the terminals against forces that work on the conductors.
Further advantages of embodiments of the invention are disclosed in the dependent claims.
An embodiment of the invention refers to a separate flexible element. The elastic element is embodied as a separate element and can therefore be made of a different material than the guidance element.
A simple embodiment of the elastic element is attained by using an elastic o-ring as an elastic element. The elastic o-ring is cheap and can easily be positioned in the housing.
In a further embodiment, the elastic element may be part of the guidance element. This provides the advantage that the position of the elastic element referring to the guidance element is precisely defined and less parts have to be handled during the mounting of the connector.
In a further embodiment, the guidance element comprises recesses in which the conductors are disposed and by which the conductors are guided according to a predefined direction. Because of the guiding in the predefined direction, the fastening of the conductors is improved. That results in combination with the flexible element in transferring less forces to the terminals.
In a further embodiment, the guidance element comprises two rows of recesses at opposite sides, whereby at the opposite sides rows of conductors are arranged that are guided in the recesses. This provides a guidance element for a lot of conductors that have to be guided in a small space.
In a further embodiment, the o-ring is arranged at one side of the guidance element, whereby at least one conductor is in contact with two sections of the o-ring. Therefore, the conductor is in contact with two sections of the o-ring which improves the elastic fastening of the conductor.
In a further embodiment, the guidance element comprises two protruding parts at which the o-ring is fixed. This provides a simple and reliable fixing of the o-ring with the guidance element.
In a further embodiment, there are sealing means arranged between the conductors and the connector housing to seal the connectors against dust or water. This improves the sealing of the connector.
In a further embodiment, the retainer element comprises two arms that circumvent at two sides the guidance element. Thus, it is possible to hold two series of conductors at opposite sides of the guidance element with the retainer element. Furthermore, the two arms provide a strong and reliable fixing of the retainer element with the housing.
In a further embodiment, the retainer element comprises only one arm that is arranged on one side of the guidance element and that presses one row of conductors to the elastic element. This structure of the retainer element is simple and useful if there is only one series of conductors at one side of the guidance element.
In a further embodiment, there are second sealing means that are arranged at the conductors, whereby the second sealing means closes free space between the housing and the conductors to prevent infiltration of fluid into the connector. The second sealing means improve the sealing of the connector.
In a further embodiment, snapping means are provided for fastening the retainer element to the housing.
Embodiments of the connector are described referring to the following figures, whereby
The guidance element 4 comprises a lower plate 14 and an upper plate 15 that are connected by a connecting part that is not shown in
In the shown embodiment of the guidance element 4, there are at opposite sides of the guidance element 4 two series of guidance channels 18, whereby on each side of the guidance element 4 there are three guidance channels 18 which are arranged in parallel to each other.
The guiding recesses 17 have the shape of long-holes which are open at the rim of the first and the second plate 14, 15. The length of the long-hole shape of the guiding recesses 17 is greater than a diameter of a conductor 6. This means that the first and the second plate 14, 15 comprise protrusions 19 that define the guiding recesses 17 and that go beyond the conductors 6 in a lateral direction. This means that in a mounted position of the guidance element 4, two second guidance channels 20 are arranged at the two sides of the elastic element which is defined by the protrusions 19 of the lower and the upper plate 14, 15, the housing 2 and the conductors 6.
The rear end 9 of the housing 2 has the shape of an oval collar 22, whereby four second openings 21 are arranged in the collar at one level providing insertion openings for a retainer element 7 with two parallel arms 23. In the mounted position, the retainer element 7 is inserted at a first side of the collar 22 in two second openings 21, whereby each arm 23 is arranged in a second opening 21. Then the arms 23 are inserted in the second guidance channels 20. The mounted retainer element 7 fixes the guidance element 4 with the housing 2 and pushes the conductors 6 against the elastic element 5. In the mounted position of the retainer element 7 the conductors 6 lie at inner sides of the arms 23 and at the elastic element 5. A conductor 6 comprises an electrical line 24 that is surrounded by an insulating cover 25.
At least one arm 23 of the retainer element 7 comprises at an outer side a projection 26 that latches with a notch that is arranged at an inner face of the collar 22. The two arms 23 of the retainer element 7 are connected by a clip 27 that may have a higher height than the arms 23.
In
The o-ring may be made of any type of elastic material, for example elastomer, in the example silicon elastomer.
In a further embodiment, there are sealing means 51, for example a sealing ring that circumvents the conductors 6 and is arranged between the housing 2 and the conductors 6. In a further embodiment, the connectors 6 may comprise second sealing means that circumvents the conductors 6 and that seals the conductors 6 against each other and/against the housing 2.
The elastic element 5 therefore has not the function of sealing the conductors 6 and/or the housing 2 against the intrusion of water or dust. The elastic element 5 has the task to fasten resiliently the conductors 6 to prevent transmission of movement and/or forces via the conductors 6 to the terminals 3.
Number | Date | Country | Kind |
---|---|---|---|
09155011 | Mar 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/052911 | 3/8/2010 | WO | 00 | 9/9/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/102978 | 9/16/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4684190 | Clark et al. | Aug 1987 | A |
4832616 | Stein, Sr. et al. | May 1989 | A |
4871323 | Ohsumi | Oct 1989 | A |
5021610 | Roberts | Jun 1991 | A |
5244407 | Volk et al. | Sep 1993 | A |
5613868 | Ohsumi et al. | Mar 1997 | A |
5700156 | Bussard et al. | Dec 1997 | A |
6077122 | Elkhatib et al. | Jun 2000 | A |
6398585 | Fukuda | Jun 2002 | B1 |
6443765 | Ichio et al. | Sep 2002 | B2 |
6494740 | Fukuda et al. | Dec 2002 | B1 |
6514102 | Fukuda et al. | Feb 2003 | B1 |
7070454 | Pepe et al. | Jul 2006 | B1 |
7126064 | Shemtov | Oct 2006 | B1 |
20090011637 | Kim, II | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
4015793 | Dec 1990 | DE |
4206568 | Sep 1992 | DE |
202005019209 | Jun 2006 | DE |
102007028836 | Dec 2008 | DE |
0652607 | May 1995 | EP |
2779012 | Nov 1999 | FR |
402563 | Dec 1933 | GB |
Entry |
---|
Search Report issued by the European Patent Office, dated Jul. 31, 2009, for Priority Application No. EP 09155011.1, 6 pages. |
International Preliminary Report on Patentability issued the The International Bureau of WIPO, Geneva, Switzerland, dated Sep. 13, 2011 for International Application No. PCT/EP2010/052911; 5 pages. |
Number | Date | Country | |
---|---|---|---|
20120003860 A1 | Jan 2012 | US |