This application claims priority under 35 U.S.C. §119 to Chinese Patent Application No. 201010153046.9 filed on Apr. 16, 2010.
The invention relates to an electrical connector and in particular to an electrical connector capable of transmitting high speed signals.
USB (Universal Serial Bus) is a well-known communication standard, which has been upgraded from a known USB 2.0 standard to a current USB 3.0 standard, also known as high speed USB, wherein the transmission speed of USB has been increased from 480 Mbit/s to 5 Gbit/s. However, USB 3.0 standard has very rigorous requests on the structure design and the electrical performance of the electrical connector interface for transmitting high speed signals.
Referring to
However, in the known connector, as shown in
Considering above disadvantages of the known high speed USB connector, such as the crosstalk between the high speed differential signal terminals and between the high speed differential signal terminals and the low speed differential signal terminals, and the signal transfer delay of the high speed differential signal terminals, it has been demanded to develop a new or novel high speed USB connector capable of overcoming or alleviating at least one aspect of the above mentioned disadvantages.
An electrical connector according to the invention has been prepared to overcome, inter alia, crosstalk between the high speed differential signal terminals and between the high speed differential signal terminals and the low speed differential signal terminals, as well as a signal transfer delay of the high speed differential signal terminals.
The electrical connector including an insulator body, a shield, and an upper and lower rows of terminals held in the insulator body. One of the two rows of terminals is a row of low speed circuit terminals, and the other one is a row of high speed circuit terminals. The row of high speed circuit terminals includes two pairs of high speed differential signal terminals, and each of the high speed differential signal terminals has a contact portion, an insertion portion and a connection portion between the contact portion and the insertion portion. A part of the connection portion of the high speed differential signal terminal is folded away from the low speed circuit terminal to form a folding section. It increases the space between the high speed differential signal terminal and the low speed circuit terminal and effectively reduces the capacitive coupling crosstalk therebetween.
The present invention is illustrated in greater detail below by exemplary embodiments with reference to the attached drawings, in which:
The invention is explained in greater detail below with reference to the drawings, wherein like reference numerals refer to the like elements. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that the description will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
With reference to
As shown in
As shown in
The row of high speed circuit terminals includes a first ground terminal 35 and two pair of high speed differential signal terminals 34, 34. The first ground terminal 35 and the two pair of high speed differential signal terminals 34, 34 are arranged side by side in parallel to each other and have a same length with each other. The row of low speed circuit terminals includes a power terminal 31, a pair of low speed differential signal terminals 32, and a second ground terminal 33. The power terminal 31, the pair of low speed differential signal terminals 32, and the second ground terminal 33 are arranged side by side in parallel to each other and have a same length with each other. The first ground terminal 35 of the high speed circuit includes a contact portion 351, an insertion portion 354 and a connection portion 352 between the contact portion 351 and the insertion portion 354.
Two pairs of high speed differential signal terminals 34, 34 are substantively same as each other in shape and size. Moreover, the structure of each of the high speed differential signal terminals 34, 34 is similar to that of the first ground terminal 35, that is, each of the high speed differential signal terminals 34, 34 also has a contact portion 341, an insertion portion 344 and a connection portion 342 between the contact portion 341 and the insertion portion 344.
The second ground terminal 33 of the low speed circuit also has a contact portion 331, an insertion portion 334 and a connection portion 332 between the contact portion 331 and the insertion portion 334. In addition, the power terminal 31 of the low speed circuit has a contact portion 311, an insertion portion 314 and a connection portion 312 between the contact portion 311 and the insertion portion 314. In addition, each of the pair of low speed differential signal terminals 32 has a contact portion 321, an insertion portion 324 and a connection portion 322 between the contact portion 321 and the insertion portion 324.
Furthermore, the second ground terminal 33 and the power terminal 31 are substantively the same as each other in shape and size. The low speed differential signal terminals 32 are substantively the same as each other in shape and size.
The connection portion 352 of the first ground terminal 35 is designed to have a width larger than the connection portion 342 of each of high speed differential signal terminals 34, 34. Accordingly, the electrical connector can effectively reduce the inductive coupling between the high speed circuit terminals. Because inductive coupling is responsible for the crosstalk between the high speed differential signal terminals, it can effectively reduce the crosstalk between the high speed differential signal terminals. The inductive coupling may be expressed by a following formula (1):
Vnoise=Lm*(dVdriver/dt) (1)
Vnoise is the inductive coupling between the high speed circuit terminals. Lm is a mutual inductance generated in the high speed circuit, and dVdriver/dt is a speed change rate of transmitting signal through the high speed circuit terminal.
According to the above formula (1), it is apparent that the inductive coupling Vnoise between the high speed circuit terminals is caused mainly by the mutual inductance Lm generated in the high speed circuit.
In order to reduce the mutual inductance Lm generated in the high speed circuit and to effectively reduce the crosstalk between the high speed differential signal terminals, the first ground terminal 35 is widened relative to the other high speed circuit terminals 34 in the embodiment shown.
The first ground terminal 35 may be wider than each of the high speed differential signal terminals 34 in whole or in a local portion. Accordingly, if at least a part of the first ground terminal 35 is wider than a corresponding part of the high speed differential signal terminal 34, it will be within the scope and spirit of the invention.
With respect to
Referring to
Inoise=Cm*(dVdriver/dt) (2)
Cm=∈A/d (3)
Inoise is the capacitive coupling between the high speed differential signal terminal and the low speed differential signal terminal. Cm is a capacitance between the high speed differential signal terminal and the low speed differential signal terminal, and ∈ is a dielectric constant of the insulation material surrounding the high speed differential signal terminal and the low speed differential signal terminal. A is an area of the high speed differential signal terminal facing the low speed differential signal terminal, while d is the space distance between the high speed differential signal terminal and the low speed differential signal terminal.
According to formulas (2) and (3), the capacitive coupling Inoise between the high speed differential signal terminal and the low speed differential signal terminal is inversely proportional to the space distance d therebetween. Thereby, when the high speed differential signal terminal 34 is folded far away from the low speed circuit terminal, the space distance d between the high speed differential signal terminal 34 and the low speed differential signal terminal 32 is increased, and it can effectively reduce the capacitive coupling between the high speed differential signal terminal 34 and the low speed differential signal terminal 32 and the crosstalk therebetween due to the capacitive coupling.
Similarly, a rear part of the connection portion 352 of the first ground terminal 35 also is folded upwardly in a direction far away from the low speed circuit terminal to form a folding section 353.
With reference back to
Similarly, a rear part of the connection portion 312 of the power terminal 31 also is folded downwardly in a direction far away from the high speed circuit terminal to form a folding section 313, and a rear part of the connection portion 332 of the second ground terminal 33 also is folded downwardly in a direction far away from the high speed circuit terminal to form a folding section 333.
As shown in
The folding sections 343, 353 of the row of high speed circuit terminals 34, 35, 34 are upwardly protruded and horizontally extend to form protruded flat sections, respectively. But the present invention is not limited to this, the folding sections 343, 353 of the row of high speed circuit terminals 34, 35, 34 may be inclined and upwardly extend to form upward slope sections, respectively.
With reference to
The folding sections 313, 323, 333 of the row of low speed circuit terminals 31, 32, 33 are inclinedly and downwardly extend to form downward slope sections, respectively. But the present invention is not limited to this, the folding sections 313, 323, 333 of the row of low speed circuit terminals 31, 32, 33 may be downwardly depressed and horizontally extend to form depressed flat sections, respectively.
A front portion of each of connection portions 312, 322, 332 of the low speed circuit terminals 31, 32, 33 is embedded in the insulation body 2, and the rear portion of each of connection portions 312, 322, 332 of the low speed circuit terminals 31, 32, 33 is exposed out of the insulation body 2 through a window 27 (shown in
As shown in
Propagation Delay=L*sqrt(∈)/C (4)
Propagation Delay is the signal transfer delay of the high speed differential signal terminal during transmitting signals. L is a length of the high speed differential signal terminal, while ∈ is the dielectric constant of the insulation material surrounding the high speed differential signal terminal, and C is a velocity of light.
According to formula (4), when the length L of the high speed differential signal terminal is determined, the signal transfer delay of the high speed differential signal terminal can be effectively decreased by reducing the dielectric constant ∈ of the insulation material surrounding the high speed differential signal terminal.
As a result, by removing the rear side wall of the insulation body 2, the high speed differential signal terminals 34, 34 at the rear side wall of the insulation body 2 are surrounded by air, instead of the plastic. Thereby, the dielectric constant ∈ of the insulation material surrounding the high speed differential signal terminals is decreased so that the transmitting speed of the high speed differential signals in the high speed differential signal terminals is substantially equal to the velocity of light.
Furthermore, the embodiment shown can also decrease the capacitive coupling between the high speed differential signal terminals 34, 34, and it can effectively reduce the crosstalk between them due to the capacitive coupling. The capacitive coupling may be expressed by following formulas (5) and (6):
Inoise=Cm*(dVdriver/dt) (5)
Cm=∈A/d (6)
Inoise is the capacitive coupling between the high speed differential signal terminals, and Cm is a capacitance between the high speed differential signal terminals. The constant ∈ is a dielectric constant of the insulation material surrounding the high speed differential signal terminals, A is a area of the high speed differential signal terminals facing to each other; and d is the space distance between the high speed differential signal terminals.
According to formulas (5) and (6), the capacitive coupling Inoise between the high speed differential signal terminals is inversely proportional to the space distance d therebetween. As a result, by removing the rear side wall of the insulation body 2, the high speed differential signal terminals 34, 34 at the rear side wall of the insulation body 2 are exposed in and surrounded by air, instead of the plastic, in the shown embodiment. Thereby, the dielectric constant ∈ of the insulation material surrounding the high speed differential signal terminals is decreased so that the crosstalk between the high speed differential signal terminals is reduced.
As shown in
In order to enlarge the window 27 as much as possible, the height of the retaining wall 21 is far less than that of the window 27 in the shown embodiment. Preferably, the height of the retaining wall 21 is less than a half of the height of the window 27.
The retaining wall 21 and the base 23 are integrally formed into one piece, for example, by overmolding.
The invention is however not limited to this formation, the rear side wall of the base 23 may be removed completely, and the retaining wall 21 may be a separate member and assembled in the window 27 formed by completely removing the rear side wall of the base 23.
With reference to
Referring now to both
The electrical connector according to the invention conforms with the know USB 3.0 standard, the row of low speed circuit terminals are compatible with the known USB 2.0 connector for transmitting low speed signals, and the row of high speed circuit terminals are used to transmit high speed signals according to USB3.0 communicating protocol.
Although several embodiments have been shown and described, it would be appreciated by those skilled in the art that various changes or modifications may be made in these embodiments without departing from the principles and spirit of the disclosure, the scope of which is defined in the claims and their equivalents. It should be noted that the term “comprising” does not exclude other elements or steps and the “a” or “an” does not exclude a plurality. It should also be noted that reference signs in the claims shall not be construed as limiting the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0153046 | Apr 2010 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6183302 | Daikuhara et al. | Feb 2001 | B1 |
7878847 | He et al. | Feb 2011 | B2 |
8079879 | Chiang | Dec 2011 | B2 |
20090042421 | Zheng et al. | Feb 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110306238 A1 | Dec 2011 | US |