The present invention relates to an electrical connector and in a particular to an electrical connector having a short-circuit terminal for short-circuiting connecting signal transmission terminals.
An electrical connector for an air bag used in an automobile includes a male connector and a female connector. Male terminals for signal transmission positioned in the male connector are connected to a signaling side, such as a shock sensor, while female terminals for signal transmission in the female connector are connected to an apparatus side, such as an air bag unit. The connector has a function, among others, of short-circuiting the female terminals in order to prevent malfunction due to an accidental current flow to the apparatus side when the male connector and the female connector are separated from each other. The connector also has a function of breaking the short circuit between the female terminals when the male connector and the female connector are mated with each other (see Japanese Patent Laid-Open No. 9-50850, for example).
As shown in
The female connector 100 has a U-shaped short-circuit terminal for short-circuiting a pair of female terminals 120 that are adjacent to each other in the width direction. As shown in Japanese Patent Laid-Open No. 9-50850, the conventional short-circuit terminal has a bent part formed at the rear thereof and a contact formed at the front thereof that is to come into direct contact with a female terminal, and the section from the bent part to the contact functions as a spring. The contact comes into elastic contact with the lower surface of the contact protrusion 120b of the female terminal 120 through a window 114 formed in a front part of the housing. Then, as shown by the arrow A in
For the conventional female connector 100, the lances 112 are disposed above the female terminals 120 to which an upward force is applied. However, the lances 112 are elastically deformable and therefore cannot adequately absorb the upward force. As a result, the female terminals 120 are deformed to be bent upward, and the contact between the contacts and the female terminals 120 is unstable. Thus, there is a possibility that the short circuit between the paired female terminals 120 is broken, and a current may accidentally flow to the apparatus side, which causes malfunction.
If a housing wall that supports the female terminals 120 is formed at the front of the lances 112, the upward displacement of the female terminals 120 can be prevented. Actually, however, a mold member for forming the lances 112 has to be placed at the front of the lances 112, and therefore the housing wall cannot be formed at the front of the lances 112.
In addition, as a component of an automobile, there is a demand for minimizing the female connector 100. To meet the demand, the lance 112, which is a component of the female connector 100, also has to be reduced in size. However, if the size of the lance 112 is reduced, the strength of the lance 112 decreases, and the female terminal 120 is more easily deformed and bent upward.
In addition, for the known female connector 100, the window 114 is formed over a front end part of the terminal receiving cavities 111. Thus, as shown in
The present invention has been devised in view of such technical problems, and an object of the present invention, among others, is to provide a connector that can provide stable contact between a signal transmission terminal and a short-circuit terminal and prevent rotation of the signal transmission terminal about an axis thereof even if the connector is downsized.
To achieve the object described above, a connector according to the invention includes a main body having a plurality of terminal receiving cavities provided with lances by which signal transmission terminals are secured and a plurality of short-circuit terminal receiving cavities adjacent to the terminal receiving cavities for receiving short-circuit terminals. Each short-circuit terminal includes a bent part at a forward position and a contact at a rearward position. The main body further includes a window that is formed at a position to the rear of the lances corresponding to the contacts of the short-circuit terminals and through which the terminal receiving cavities and the short-circuit terminal receiving cavities communicate with each other. The contacts of the short-circuit terminals are in contact with the female terminals through the window.
The invention is described in more detail in the following with reference to the embodiments shown in the drawings. Similar or corresponding details in the Figures are provided with the same reference numerals. The invention will be described in detail with reference to the following figures of which:
In the following, an embodiment of the present invention will be described with reference to
In general, the shown embodiment relates to a connector used for an air bag for an automobile. However, other applications of the invention are possible.
A female connector 10 according to the invention includes a connector main body 20 and a housing 40 that houses the connector main body 20. The female connector 10 is to be mated with a male connector 60 described later.
A female terminal 11 (i.e. signal transmission terminal) of the female connector 10 is connected to an apparatus side of an air bag unit, and a male terminal 63 of the male connector 60 is connected to a signaling side, such as a shock sensor.
The connector main body 20 has a sub-housing 21 in which a plurality of terminal receiving cavities 22 for receiving a plurality of female terminals 11 therein are formed. The sub-housing 21 is integrally molded with the connector main body 20 from a resin material by injection molding in the embodiment shown. The terminal receiving cavities 22 are formed to penetrate the sub-housing 21 in the front-back direction of the sub-housing 21. Male terminal inlets 32 are formed in a front end part of the sub-housing 21 at positions corresponding to the positions of the terminal receiving cavities 22. Additionally, the sub-housing 21 has elastically deformable lances 23 facing the terminal receiving cavities 22. The female terminal 11 is secured by the lance 23. The female terminal 11 is also further secured when the connector main body 20 is fit into the housing 40.
The female terminal 11 is formed by stamping and bending a metal material that has both high strength and high conductivity. The female terminal 11 has a contact piece 11a formed by folding back a front end part thereof and a contact protrusion 11b protruding to the inside of the cavity 22. The male terminal 63 of the male connector 60 is electrically connected to the female terminal 11, wherein the upper surface of the male terminal 63 is in contact with the contact piece 11a and the lower surface is in contact with the contact protrusion 11b. In
According to the invention, two adjacent female terminals 11 received in the terminal receiving cavities 22 in the uppermost row may be paired. For instance, in the embodiment shown in Figures, there are eight cavities 22 in the uppermost row, and thus, there are four pairs of female terminals 11 in total. When the female connector 10 is separated from the male connector 60, the paired female terminals 11 are short-circuited, thereby preventing an accidental current flow to the air bag side. When the female connector 10 and the male connector 60 mate with each other, the short circuit between the paired female terminals 11 is broken.
Short-circuit terminal receiving cavities 24 for accommodating the U-shaped short-circuit terminals 12 therein are formed in a front part of the sub-housing 21. In the embodiment shown, the short-circuit terminal receiving cavities 24 are formed below the terminal receiving cavities 22 in the uppermost row. Four cavities 24 are arranged in the width direction of the sub-housing 21, with each cavity 24 associated with two cavities 22. The sub-housing 21 has a window 25 positioned to the rear of the lance 23 and through which the cavities 22 in the uppermost row and the cavities 24 communicate with each other.
The sub-housing 21 has a retainer insertion passageway 26 formed to the rear of the cavities 24. The retainer insertion passageway 26 is formed in the width direction of the sub-housing 21 perpendicular to the front-rear direction of the sub-housing 21. The retainer insertion passageway 26 communicates with the cavities 22 in the rows above and below the cavities 24. A retainer 43 formed on the housing 40 is inserted into the retainer insertion passageway 26. When the retainer 43 is inserted to a proper position in the retainer insertion passageway 26, the female terminals 11 are secondarily locked by the retainer 43.
The sub-housing 21 has a guide groove 27 formed in the upper surface and guide grooves 28 and 29 formed in the lower surface. The guide grooves 27, 28 and 29 are formed in the width direction of the sub-housing 21.
The short-circuit terminal 12 is formed by stamping and bending a metal material that has both high strength and high conductivity. The short-circuit terminal 12 has a bottom plate 13 to be fixed to the bottom surface of the cavity 24. The short-circuit terminal 12 further has a U-shaped bent part 14 formed by upwardly folding back a front end part of the bottom plate 13 and a spring 15 extending rearward from the bent part 14. The spring 15 has a contact 16 formed to protrude upward. In short, the short-circuit terminal 12 has the bent part 14 at the front thereof and the contact 16 at the rear thereof.
A positioning passageway 13a (see
The spring 15 branches into two sections. As a result, one short-circuit terminal 12 has two contacts 16. When the female connector 10 is separated from the male connector 60, the two contacts 16 maintain contact with the lower surfaces of the paired two female terminals 11 through the window 25. As a result, the paired two female terminals 11 are short-circuited. When the female connector 10 is mated with the male connector 60, a short-circuit breaking protrusion 62 formed on the male connector 60 is inserted between the lower surface of the female terminal 11 and the contacts 16 to press the contacts 16 down, thereby breaking the short-circuit (see
The housing 40 has a connector receiving cavity 41 (referred to as a cavity 41 hereinafter) for receiving the connector main body 20 therein. The housing 40 is also integrally molded from a resin material by injection molding.
The cavity 41 has an opening on one side in the width direction of the housing 40, and the connector main body 20 is inserted into the cavity 41 through the opening. The housing 40 has a plurality of male terminal inlets 42 formed in the front end surface thereof at positions corresponding to the male terminal inlets 32 of the connector main body 20. The male terminals 63 of the male connector 60 are connected to the female terminals 11 through the male terminal inlets 42 and the male terminal inlets 32.
The retainer 43 to be inserted into the retainer insertion passageway 26 of the connector main body 20 is formed in the cavity 41 of the housing 40. The retainer 43 protrudes from the inner surface of a side wall 44 of the housing 40 opposite to the side where the opening is formed. When the connector main body 20 is fit into the housing 40, an engaging end 11c of the female terminal 11 abuts against the front end surface of the retainer 43, and thereby the female terminal 11 is secondarily secured.
The housing 40 has guide protrusions 47, 48 and 49 extending into the cavity 41. When the connector main body 20 is inserted into the cavity 41 of the housing 40, the guide protrusion 47 is inserted into the guide groove 27, the guide protrusion 48 is inserted into the guide groove 28, and the guide protrusion 49 is inserted into the guide groove 29, thereby guiding the connector main body 20 to a predetermined position in the cavity 41.
The housing 40 has a lock 45 positioned to the rear of the retainer 43 in the cavity 41 (see
For the female connector 10, the short-circuit terminals 12 are inserted into the cavities 24 of the sub-housing 21 from the front. When the female terminals 11 are inserted into the cavities 22 of the sub-housing 21 from the rear, the female terminals 11 are secured by the flexible lances 23. The paired female terminals 11 come into contact with the contacts 16 of the short-circuit terminals 12 and are thereby short-circuited. Although the cavities 22 located above the cavities 24 have been described above, the female terminals 11 received in the cavities 22 below the cavities 24 are also secured by the lances 23.
The connector main body 20 provided with the female terminals 11 and the short-circuit terminals 12 is inserted into the cavity 41 through the opening of the housing 40. In this operation, the retainer 43 is inserted into the retainer insertion passageway 26 of the connector main body 20. When the connector main body 20 is inserted to a proper position, the engaging protrusion 46 formed at the tip end of the lock 45 is engaged with the engaging groove 30 of the sub-housing 21 to prevent the connector main body 20 from falling off the sub-housing 21. In addition, the engaging ends 11c of the female terminals 11 abut against the front end surface of the retainer 43, and thereby the female terminals 11, which have been secured by the lances 23, are further secured.
When the female connector 10 according to the invention is mated with the male connector 60, the male terminals 63 held in the housing 61 of the male connector 60 and the female terminals 11 held in the connector main body 20 of the female connector 10 are electrically connected to each other. When mated, the short-circuit breaking protrusions 62 formed on the housing 61 of the male connector 60 are inserted between the contacts 16 of the short-circuit terminals 12 and the female terminals 11 to press the contacts 16 down, thereby breaking the short-circuit of the paired female terminals 11 (see
Characteristics of the female connector 10 according to the embodiment described above will be described in comparison with the known female connector 100.
For the known female connector 100, the elastically deformable lance 112 cannot adequately absorb the upward force applied to the female terminal 120. Thus, the female terminal 120 is likely to be deformed to be bent upward. As a result, the contact between the short-circuit terminal and the female terminal 120 is unstable.
To the contrary, as shown in
For the known female connector 100, the contact of the short-circuit terminal is in contact with the lower surface of the contact protrusion 120b of the female terminal 120. As shown in
To the contrary, for the female connector 10 according to the invention, the contacts 16 are positioned to the rear of the lance 23. Since the contact protrusion 11b is displaced from the position corresponding to the contacts 16, the lower surface of the bottom plate 13 is flat at that position. Therefore, the female connector 10 according to the invention has a sufficient contact area between the contacts 16 and the female terminals 11, and therefore, the short circuit between the paired female terminals 11 can be stably maintained.
For the known female connector 100, as shown in
To the contrary, for the female connector 10 according to the invention, there is a lower supporting wall 21b that supports the lower surface of the female terminal 11 at the front end of the sub-housing 21 (see
For the known female connector 100, in manufacturing of the housing 110 by injection molding, a molding pin P for forming the window 114 is inserted from the front (see
To the contrary, for the female connector 10 according to the invention, the retainer insertion passageway 26 extending in the width direction is formed in the sub-housing 21 of the connector main body 20 (see
Although an embodiment of the invention has been described above, the invention should not be construed as being limited to the embodiment. Although the embodiment described above relates to a connector used for an air bag, the present invention can be widely applied to a connector provided with signal transmission terminals to be short-circuited and a short-circuit terminal. The female terminals 11 to be short-circuited are not limited to those in the uppermost row in the sub-housing 21, and the female terminals 11 disposed in the lowermost row can also be short-circuited. It is, therefore, intended that the foregoing description be regarded as illustrative rather than limiting, and that the scope of the invention is given by the appended claims together with their full range of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2008-240511 | Sep 2008 | JP | national |
This application is a continuation of PCT International Application No. PCT/JP2009/004407 filed Sep. 7, 2009, which claims priority under 35 U.S.C. §119 to Japanese Patent Application No. JP 2008-240511, filed Sep. 19, 2008.
Number | Name | Date | Kind |
---|---|---|---|
5647754 | Kohno | Jul 1997 | A |
5857857 | Fukuda | Jan 1999 | A |
6123553 | Kobayashi et al. | Sep 2000 | A |
20110217864 | Sasaki et al. | Sep 2011 | A1 |
20110223789 | Sasaki et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
64-41989 | Mar 1989 | JP |
950850 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20110217864 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/004407 | Sep 2009 | US |
Child | 13050616 | US |