The present disclosure generally relates to an electrical connector used for interconnecting an electrical device to another electrical device.
An electrical connector typically includes a housing, a plug, a printed circuit board, and an electromagnetic shielding cover. The printed circuit board is received in the housing. The plug is electrically mounted to the printed circuit board. The electromagnetic shielding cover wraps around the printed circuit board to provide electromagnetic protection for the printed circuit board. The plug has a holder and a number of pins fixed to the holder. When the electrical connector is plugged into a matching port of an electrical device or unplugged therefrom, the plugging/unplugging force also applies to the joint between the plug and the printed circuit board and tends to damage the electrical connection between the plug and the printed circuit board. The performance and stability of the electrical connector may be influenced thereby.
What is needed, therefore, is an electrical connector to overcome the above mentioned problems.
Referring to
The printed circuit board 10 includes a substrate 11, and a series of first bonding pads 14 and second bonding pads 15 formed on the substrate 11. The first bonding pads 14 are electrically connected to the plug 20, and the second bonding pads 15 are connected to a cable (not shown) for information transmission. The substrate 11 defines a number of first through holes 12 and second through holes 13 for engagements of the electromagnetic shielding cover 30 and the plug 20.
The plug 20 includes a holder 21 and a series of pins 22 fixed in the holder 21. The holder 21 includes a series of second engaging feet 211 on the bottom surface thereof. The holder 21 also includes a surface 212 facing a port to be plugged into and two positioning pins 213 protruding away from the surface 212. The second engaging feet 211 are engaged into the corresponding second through holes 13 for fixedly mounting the plug 20 to the printed circuit board 10, and the pins 22 are electrically connected to the corresponding bonding pads 15 for electrically connecting the plug 20 with the printed circuit board 10. The positioning pins are 213 are configured for aligning and positioning the plug 20.
The electromagnetic shielding cover 30 includes a first electromagnetic shielding sub-cover 31, a second electromagnetic shielding sub-cover 32 and a third electromagnetic shielding sub-cover 33. The first, second and third electromagnetic shielding sub-cover 31, 32, 33 respectively includes a series of first engaging feet 311, 321 and 331. The first engaging feet 311, 321 and 331 are engaged in the corresponding first through holes 12 of the printed circuit board 10. The first and second electromagnetic shieding sub-cover 31, 32 covers the two surfaces of the first through holes 12 defined therethrough. The third electromagnetic shielding sub-cover 33 connects the first and second electromagnetic shielding sub-coverss 31, 32 and defines a first opening 332 as the cable entrance.
The reinforced frame 40 includes a panel 41, a pair of side plates 42 extending from two opposite edges of the panel 41, and a back plate 43 extending from another edge of the panel 41 substantially perpendicular to the side plates 42. The back plate 43 defines a second opening 431 aligned with the position of the first opening 332 of the third electromagnetic shielding sub-cover 33 to allow the cable to pass therethrough, and several screw holes 432 to allow a corresponding number of screws (not shown) to be inserted therethrough for fixing the reinforced frame 40 to the housing 50.
The housing 50 includes a hollow main body 51 and a back cover 52 attached to the main body 51 for enclosing the printed circuit board 10, the plug 20 and the electromagnetic shielding cover 30 in the main body 51 therein. The main body 51 defines a plug opening 511 to allow the plug 20 to protrude therethrough. The back cover 52 defines a third opening 521 aligned with the first opening 332 and the second opening 431 for the cable to pass through.
Referring to
When the electrical connector 100 is plugged/unplugged into/from a matching port of an electrical device, the plugging/unplugging force applied to the plug 20 is shared by the reinforced frame 40 and also the housing 50 because the reinforced frame 40 is fixedly connected with the housing 50. Therefore, this electrical connector 100 can partially transfer the force applied to the plug 20 and thereby protect the electrical connection between the plug 20 and the printed circuit board 10 from being damaged. As a result, the performance and longevity of the plug 20 and the printed circuit board 10 are improved.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0302125 | Jun 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3492538 | Fergusson | Jan 1970 | A |
5125849 | Briggs et al. | Jun 1992 | A |
6705899 | Ji | Mar 2004 | B1 |
6832856 | Chiu et al. | Dec 2004 | B2 |
7074082 | Kerlin et al. | Jul 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20090311883 A1 | Dec 2009 | US |