1. Field of the Invention
The present invention relates generally to an electrical connector, and more particularly relates to an electrical connector for electrically connecting a plug assembly to a PCB.
2. Background of the Invention
Zero Insertion Force (ZIF) electrical connectors are widely used for electrically connecting two electrical interfaces such as an electrical substrate, e.g. a PCB, and plug assembly, e.g. a central processing unit (CPU).
Typical conventional ZIP connectors are disclosed in Chinese Patent Nos. 2501204, 2588065 and U.S. Pat. Nos. 6,340,309, 6,431,900. Each of these connectors generally comprises a base connected to a PCB, a movable cover mounted on the base and a driving mechanism. The base includes a plurality of passageways and a plurality of conductive contacts received therein. The cover includes a plurality of through holes corresponding to the passageways in the base. The driving mechanism is used to drive the cover to move from an open position to a closed position. While the cover is at the open position, pins of the plug assembly are inserted into the through holes of the cover and the passageways of the base. At this time, the pins do not contact with any conductive contacts. While the cover is at the closed position, the plug assembly is electrically connected with the PCB by the pins contacting with the conductive contacts. However, in conventional electrical connector, the base is usually molded by an injected art and the conductive contacts are usually sealed in the passageways of the base, while the plug assembly is mated with the base. The heat exerted by the conductive contacts, when the connector is in using, is hardly to be distributed.
As electronic systems become more sophisticated, the systems require an increasing number of conductive contacts. Thus, as electronic systems become more advanced, the quantity of contacts with the electrical connector increase. The above-mentioned problem becomes more obvious and serious.
In view of the foregoing, a new and improved electrical connector is desired to solve above-mentioned problems.
Certain embodiments of the present invention provide an electrical connector for electrically connecting a plug assembly to a PCB. The electrical connector includes a base mounted to the PCB, which has an upper surface and a lower surface opposite to the upper surface, a plurality of conductive contacts received in the base with partly extending above the upper surface, and a cover mounted on the upper surface of the base and having peripheral walls, a first and second surface corresponding to the upper surface of the base. The base defines a plurality of incontinuous standoffs extending from the upper surface of the base.
While the cover is mounted on the upper surface of the base, certain distance is defined by the standoffs between the second surface of the cover and the upper surface of the base, and certain clearance is defined between the incontinuous standoff. As each conductive contacts extends with partly above the upper surface of the base, thus while the electrical connector is in use, heat exerted by the conductive contacts is distributed to the air via the clearance between the incontinuous standoffs.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
Referring to
The base 10 has an upper surface 100 and a lower surface 101 opposite to the upper surface 100. A plurality of passageways (not labeled) extends through both said upper and lower surface 100, 101 and is arranged in a matrix. The conductive contacts 12 receive in said passageways, respectively, with partly extending above the upper surface 100 of the base 10. A plurality of incontinuous standoffs 103 extends from the upper surface 100 of the base 10. The incontinuous standoff 103 have a common height.
The cover 11 is mounted on the upper surface 100 of the base 10 and has peripheral walls 112, a first surface 110 for carrying the plug assembly, and a second surface 111 opposite to the first surface 110 and corresponding to the upper surface 100 of the base 10. The peripheral walls 112 have a plurality of grooves 114 corresponding to the clearance between said standoffs 103. The grooves 114 each extends through both said first and second surface 110,111. A plurality of through 116 holes, which enables the pins of the plug assembly to be inserted into, extends through both said first and second surface 110, 111 and is corresponding to the passageways of the base 10.
As shown in
Referring to
The base 10 has an upper surface 100 and a lower surface 101 opposite to the upper surface 100. A plurality of passageways (not labeled) extends through both said upper and lower surface 100,101 and is arranged in a matrix. The conductive contacts 12 receive in said passageways, respectively, with partly extending above the upper surface 100 of the base 10. A plurality of incontinuous standoffs 103 extends from the upper surface 100 of the base 10. The incontinuous standoff 103 have a common height.
The cover 21 is mounted on the upper surface 100 of the base 10 and has peripheral walls 214, a first surface 210 for carrying the plug assembly, and a second surface 211 opposite to the first surface 210 and corresponding to the upper surface 100 of the base 10. A plurality of incontinuous projections 213 is corresponding to the standoffs 103 of the base 10 and extends from the second surface 211. The projections 213 may be arranged in a common height or/and in a same configuration. Also, the projections 213 of the cover 21 and the standoff 103 may have a common height. A plurality of through holes 212, which enables the pins of the plug assembly to be inserted into, extends through both said first and second surface 210, 211 and is corresponding to the passageways of the base 10.
As shown in
Furthermore, although the present invention has been described with the preferred embodiment referring to
| Number | Date | Country | Kind |
|---|---|---|---|
| 2006 2 0169050 | Dec 2006 | CN | national |
| Number | Name | Date | Kind |
|---|---|---|---|
| 6699055 | Peng et al. | Mar 2004 | B2 |
| 6716051 | Zeng | Apr 2004 | B1 |
| 7361023 | Wu | Apr 2008 | B2 |
| 20050215102 | Yu et al. | Sep 2005 | A1 |
| 20050260898 | Zhu et al. | Nov 2005 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20080160806 A1 | Jul 2008 | US |