1. Field of the Invention
The present invention relates to an electrical connector, and more particularly to an electrical connector having high signal transmission rate.
2. The Related Art
Nowadays, electrical connectors are widely used in electronic products with the development of the electronic technology. And the electrical connector is required to be increasingly miniaturized and have high signal transmission rate. Conventionally, in order to have a high signal transmission rate, two or more traditional electrical connectors are pieced together. However, the pieced electrical connector often occupies a relatively large space so that cannot meet the requirement of miniaturization. Furthermore, the process of piecing together the traditional electrical connectors often need to take a great deal of manpower and material resources so that results in too high manufacture cost and lower productivity. So, an electrical connector having high signal transmission rate and miniaturized structure is required.
Accordingly, an object of the present invention is to provide an electrical connector. The electrical connector includes a supporting body, an insulating body, a plurality of first terminals, a plurality of second terminals and a shielding shell. The supporting body has a supporting portion and a tongue board protruding frontward from a front face of the supporting portion. A rear of the tongue board defines a plurality of containing slots arranged at regular intervals along a transverse direction and each extending to the front face of the supporting portion. A rear of the supporting portion is concaved frontward to form a second receiving cavity. A rear of the insulating body is concaved frontward to form a first receiving cavity. A plurality of first terminals each has a first fastening strip, a first contact portion and a first soldering portion which are connected with two opposite ends of the first fastening strip. A plurality of second terminals each has a second fastening strip, a second contact portion and a second soldering portion which are connected with two opposite ends of the second fastening strip. The shielding shell encloses the supporting body and the insulating body. The insulating body is engaged on the supporting portion of the supporting body. The first terminals are integrated in the insulating body by virtue of the first fastening strips being molded in the insulating body and arranged at regular intervals along the transverse direction. The second terminals are integrated in the supporting body by virtue of the second fastening strips being molded in the supporting body and arranged at regular intervals along the transverse direction. The first contact portions of the first terminals stretch in front of the insulating body and are received in the containing slots of the supporting body. The first soldering portions of the first terminals are vertically located in the first receiving cavity and behind the second receiving cavity with tail ends thereof further projecting beyond a bottom face of the supporting body. The second contact portions of the second terminals are exposed on the tongue board and alternately arranged in front of the first contact portions along the transverse direction. Front ends of the second contact portions are embedded in the tongue board. The second soldering portions of the second terminals are vertically located in the second receiving cavity with tail ends thereof further projecting beyond the bottom face of the supporting body. The first soldering portions and the second soldering portions are alternately arranged in two rows in longitudinal direction.
As described above, the electrical connector of the present invention not only has high signal transmission rate and miniaturized structure, but also can be assembled quickly and accurately, thus it saves a lot of manpower and material resources, reduces the production cost and further improves the production efficiency.
The present invention will be apparent to those skilled in the art by reading the following description thereof, with reference to the attached drawings, in which:
Referring to the drawings in greater detail, and first to
With reference to
Each of the first terminals 20 has a first fastening strip 21, a first contact portion 22 and a first soldering portion 23 which are connected with two opposite ends of the first strip 21. The first soldering portion 23 is perpendicularly extended downward from a rear end of the first fastening strip 21. The first contact portion 22 is meandered frontward from a front end of the first fastening strip 21 to substantially show an S-shape.
Each of the second terminals 30 has a second fastening strip 31, a second contact portion 32 and a second soldering portion 33 which are connected with two opposite ends of the second fastening strip 31. The second soldering portion 33 is perpendicularly extended downward from a rear end of the second fastening strip 31. The second contact portion 32 is bent upward and then extended forward from a front end of the second fastening strip 31, with a front end thereof bent downward and then extending forward.
The supporting body 40 has a supporting portion 41 and a tongue board 42 protruding forward from a front face of the supporting portion 41. A rear of the tongue board 42 defines a plurality of containing slots 421 arranged at regular intervals along a transverse direction and each extending to the front face of the supporting portion 41. A plurality of partitions 422 each is protruded upward between each two adjacent containing slots 421 and adjacent to the supporting portion 41. Two opposite sidewalls of the supporting portion 41 are concaved inward to form a pair of inserting cavities 411 and protrude upward to form two second pillars 412 adjacently behind the inserting cavities 411. An outer bottom of a rear wall of each inserting cavity 411 of the supporting body 41 protrudes frontward to form a locking rib 413. A rear of the supporting portion 41 is concaved frontward to form a second receiving cavity 414. A rear end of each sidewall of the second receiving cavity 414 protrudes upward to form a third pillar 415 and protrudes downward to form a fourth pillar 416. Two insides of two opposite sidewalls of the second receiving cavity 414 protrude face-to-face to form a pair of first lumps 417 and two outsides of the two opposite sidewalls of the second receiving cavity 414 oppositely protrude outward to form a pair of second lumps 418. A bottom face of the supporting portion 41 protrudes downward to form a rectangular chunk 419 behind the locking ribs 413 and two opposite ends of the chunk 419 protrude downward to form a pair of positioning column 420.
The lid 50 has a rectangular positioning body 51 and a locking portion 52 protruding forward from a bottom of a front of the positioning body 51. A front of the locking portion 52 is concaved downward to form a third receiving cavity 521 of which a bottom wall defines a plurality of second positioning grooves 522 each penetrating vertically through the locking portion 52. Two opposite sides of the locking portion 52 define a pair of first fastening fillisters 523 and two opposite sides of the locking portion 52 oppositely protrude outward to form a pair of third lumps 524 at bottoms thereof. A front face of the positioning body 51 defines a plurality of first positioning grooves 511 each penetrating vertically through the positioning body 51. Two opposite sides of the positioning body 51 oppositely protrude outward to form a pair of fastening pillars 513. Two opposite sides of the fastening pillars 513 oppositely protrude outward to form a pair of fourth lumps 514. And a third gap 525 is defined between the fastening pillar 513 and the corresponding third lump 524.
The shielding shell 60 has a top plate 61, a bottom plate 62 and two side plates 63, which corporately define a receiving chamber (not labeled) for receiving the insulating body 10 and supporting body 40 therein. The top plate 61 and the side plates 63 are punched inward to form a plurality of elastic slices 631. A rear end of each side plate 63 of the shielding shell 60 is concaved frontward to form a second fastening fillister 632. The bottom edges of the rear ends of the side plates 63 are bent and extend inward to form a pair of fastening portions 633. The bottom edges of the rear ends of the side plates 63 are extend downward to form a pair of soldering tails 634.
Referring to
Then, the lid 50 is mounted to the rears of the insulating body 10 and the supporting body 40. The locking portion 52 of the lid 50 is fixed in the second receiving cavity 414 of the supporting body 40. A top part of the positioning body 51 of the lid 50 is located in the first receiving cavity 13 of the insulating body 10. The first soldering portions 23 of the first terminals 20 and the second soldering portions 33 of the second terminals 30 are inserted in the first positioning grooves 511 and the second positioning grooves 522 respectively with the tail ends thereof projecting under the lid 50. At the same time, the third pillars 415 of the supporting body 40 are inserted in the first gaps 141 of the insulating body 10, the fastening pillars 513 of the positioning body 51 are inserted in the second gaps 142 and abut behind the third pillars 415. The first lumps 417 of the supporting body 40 are buckled in the first fastening fillisters 523 of the locking portion 52.
Lastly, the insulating body 10 with the first terminals 20, the supporting body 40 with the second terminals 30 and the lid 50 are inserted frontward in the shielding shell 60. The rear edge of the bottom plate 62 of the shielding shell 60 resists against the chunk 419, and the rear end of the bottom plate 62 is held by the locking ribs 413. The elastic slices 631 of the top plate 61 move along the paths 11 and slip over the guiding slopes 111 to be locked in the locking cavity 12 against the locking slope 121. The elastic slices 631 of the side plates 63 are buckled in the locking recesses 15 and front ends of the elastic slices 631 resist against the back surfaces of the second pillars 412. The second lumps 418 of the supporting body 40 and the corresponding fourth lumps 514 of the lid 50 are aligned with each other and buckled in the second fastening fillisters 632 of the shielding shell 60. The fastening portions 633 prop against the bottom face of the lid 50 and resist against the fourth pillars 416 of the supporting body 40.
As described above, the electrical connector 100 of the present invention not only has high signal transmission rate and miniaturized structure, but also can be assembled quickly and accurately, thus it saves a lot of manpower and material resources, reduces the production cost and further improves the production efficiency.
Number | Name | Date | Kind |
---|---|---|---|
7896559 | Yi et al. | Mar 2011 | B2 |
7909653 | Wan et al. | Mar 2011 | B1 |
8021195 | He et al. | Sep 2011 | B2 |
8123558 | Su et al. | Feb 2012 | B2 |
8147276 | Wang et al. | Apr 2012 | B2 |
8303329 | Wu | Nov 2012 | B2 |
8323057 | Ho | Dec 2012 | B2 |
8439691 | Lan et al. | May 2013 | B1 |
8568172 | Lan et al. | Oct 2013 | B1 |
20100290745 | Liao et al. | Nov 2010 | A1 |
20110256764 | Wu | Oct 2011 | A1 |
20110269322 | He et al. | Nov 2011 | A1 |
20110269341 | He et al. | Nov 2011 | A1 |
20120009818 | Yao et al. | Jan 2012 | A1 |
20120021646 | Su et al. | Jan 2012 | A1 |
20120052739 | Wang et al. | Mar 2012 | A1 |