Electrical connectors for implantable devices

Information

  • Patent Grant
  • 10610692
  • Patent Number
    10,610,692
  • Date Filed
    Friday, March 6, 2015
    9 years ago
  • Date Issued
    Tuesday, April 7, 2020
    4 years ago
Abstract
Disclosed are systems for wireless energy transfer including transcutaneous energy transfer. Embodiments are disclosed for electrical connections between an implanted wireless receiver and an implanted medical device powered by the receiver. Methods for manufacturing and using the devices and system are also disclosed.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The field relates generally to reliable electrical connectors for high-powered implantable medical devices in a fluid and tissue saturated environment.


BACKGROUND

Implantable medical devices have been known for many years. Many implanted devices need to transmit and/or receive power or data. Examples of such devices are pacemakers and implantable cardioverter-defibrillators (ICD).


Implanted medical devices often require electrical connectors for transmitting and receiving power. The connectors must be remain stable and operate reliably for many years to avoid the need for operating on the patient to replace the components. Corrosion can be a challenge because such medical devices include metal parts receiving power in a fluid environment.


Pacemaker leads are well known for providing a stable and reliable electrical connection. Over the years pacemaker leads have developed to provide stable electrical connections while resisting corrosion and wear. Examples include U.S. Pub. Nos. 2010/0010604, 2011/0196464, 2010/0010604, and 2013/0109905 and U.S. Pat. Nos. 5,433,744 and 8,583,259, the entire contents of which publications and patents are incorporated herein for all purposes. A problem with existing electrical connectors for medical devices is that they do not remain stable when subjected to higher power and/or more challenging fluid environments.


Connectors for other fluid environments have also been developed. Examples include underwater connectors and the like. Examples include European Pub. No. EP2665135 and EP2665137 and International Pub. No. WO1991/015882, the entire contents of which are incorporated herein for all purposes. A problem with such connectors is that they are designed for a specific fluid environment (e.g., water) and operating conditions.


There is a continuing need for improved electrical connectors for implanted medical devices. More broadly, there is the continuing need for improved reliable connectors for application in fluid-saturated environments, and in various respects body fluids.


SUMMARY

An implantable connector configured to carry power and control signals to a medical device is provided, comprising a female connector comprising a jack, one or more wiper seals disposed in the jack, one or more cantilevered electrical spring contacts disposed in the jack and positioned adjacent to or surrounded by the one or more wiper seals, and a male connector comprising, a plug adapted to be inserted into the jack of the female connector, one or more electrical contacts disposed on the plug, the one or more electrical contacts configured to be electrically coupled to the one or more cantilevered electrical spring contacts and wiped clean of bodily fluid and/or debris when the plug of the male connector is inserted into the jack of the female connector.


In some embodiments, the cantilevered electrical spring contacts comprise platinum iridium.


A wirelessly powered implantable system is provided, comprising an implantable module adapted to be implanted within a patient and to receive wireless energy from an external module, a medical device adapted to be implanted within the patient and to receive power and control signals from the implantable module via a driveline cable, and a bulkhead connector configured to connect the driveline cable to the implantable module, the bulkhead connector comprising a female connector including a jack, one or more wiper seals disposed in the jack, and one or more cantilevered electrical spring contacts disposed in the jack and positioned adjacent to or surrounded by the one or more wiper seals, and a male connector including a plug adapted to be inserted into the jack of the female connector and one or more electrical contacts disposed on the plug, the one or more electrical contacts configured to be electrically coupled to the one or more cantilevered electrical spring contacts and wiped clean of bodily fluid and/or debris, when the plug of the male connector is inserted into the jack of the female connector.


In some embodiments, the cantilevered electrical spring contacts comprise platinum iridium.


A method of providing an electrical connection in an implantable system is provided, comprising inserting a plug of a male connector into a jack of a female connector, wiping the plug with wiper seals disposed in the jack to clean the plug of bodily fluid and/or debris, and placing one or more platinum iridium cantilevered electrical spring contacts of the female connector into contact with electrical contacts of the male connector to electrically couple the female connector to the male connector.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 shows an implantable system with an electrical connector comprising a bulkhead connector and a driveline cable.



FIG. 2 is a schematic drawing of the connector.



FIGS. 3A-3D show various views of an electrical connector.





DETAILED DESCRIPTION

In the description that follows, like components have been given the same reference numerals, regardless of whether they are shown in different embodiments. To illustrate an embodiment(s) of the present disclosure in a clear and concise manner, the drawings may not necessarily be to scale and certain features may be shown in somewhat schematic form. Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.



FIG. 1 shows an implantable medical system 100 that includes an implantable medical device 102 (shown as a ventricular assist device) and an implanted module 104 configured to receive wireless power from outside the body to provide power and control signals for the medical device. A bulkhead connector 106 and driveline cable 108 connect the implanted module to the medical device to provide power, data, and or/control signals from the module to the device. In one embodiment, the medical device is a relatively high powered device. In some embodiments the module supplies average power of about 5 VAC, about 10 VAC, or about 15 VAC. In some embodiments the module supplies peak power of 5 VAC, 10 VAC, 15 VAC, or 25 VAC. In one embodiment, the implanted module is configured to remain inside the patient's body for a minimum of three years, and to serve as the power source and controller for the medical device. In an exemplary embodiment the module is configured to supply ˜16 VAC to drive the medical device.


In another embodiment, the implanted module 104 can include a receiver resonator coil and electronics configured to receive wireless energy from an external transmitter 110, which can include a power supply such as a pulse generator connected to a transmitter resonator coil. The connector can allow a clinician to surgically replace the implanted module by disconnecting the existing driveline cable from the existing module, removing the existing module, and reconnecting the same driveline cable to a new module without removing the medical device. Similarly, the clinician can surgically replace the cable and/or the medical device while leaving the implanted module in place. In some embodiments, an external user interface 112 can be configured to communicate with the implanted module 104 and can be worn by the patient, such as on the patient's wrist. In other embodiments, the external controller can be an electronic computing device such as a personal computer, a tablet, smartphone, or laptop computer.



FIG. 2 is a schematic drawing showing an interface between a bulkhead connector 106 and a driveline cable 108. The bulkhead connector can include a female connector 114, a mechanical interface 116 connecting the female connector to the implanted module 104, and an electrical interface 118. The driveline cable 108 can include a male connector 120, a mechanical interface 122, an electrical interface 124, and a strain relief 126 on the driveline cable at the male connector end. The mechanical interface between the female connector and the implanted module and between the male connector and the driveline cable can comprise an adhesive, for example an epoxy. It should be understood that in other embodiments, the bulkhead connector can include a male connector and the driveline cable can comprise a female connector.


Various aspects of the bulkhead connector are similar to those shown and described in U.S. Pat. Nos. 4,655,462, 4,826,144, 4,876,781, 4,907,788, 4,915,366, 4,961,253, 4,964,204, 5,139,243, 5,160,122, 5,503,375, 5,615,870, 5,709,371, 5,791,638, 7,055,812, 4,678,210, 5,082,390, 5,411,348, 5,545,842, 6,749,358, 6,835,084, 7,070,455, and 7,195,523, the entire contents of which are incorporated herein for all purposes by reference.



FIG. 3A shows an embodiment of a connector including a connector 106 with a female connector 114 and a driveline cable 108 with a male connector 120. As shown, the female connector 114 can comprise a jack 115 or slot within which the male plug 117 can be inserted to make the electrical connection between the female and male connector. As shown in the embodiment of FIG. 3A, the male connector comprises a single plug and the female connector comprises a single jack, but it should be understood that other embodiments can include any number of a plurality of jacks and plugs. The connector is shown in FIG. 3A both connected (top) and disconnected (bottom). As should be understood, the bulkhead connector 106 can connect to the implantable module 104 of FIG. 1, and the driveline cable can connect to the medical device 102 of FIG. 1, or vice versa.



FIG. 3B is another view of the connector of FIG. 3A, showing the connector 106 and the driveline cable 108 from a side view. The bulkhead connector 106 can include a female connector 114 and a set locking screw 128, and the driveline cable 108 can include a male connector 120 and a set screw locking groove 130. As in FIG. 3A, the connection is shown connected in the top of FIG. 3B and disconnected in the bottom of FIG. 3B. In one embodiment, hydrostatic lock between the male and female connectors can be avoided by including a vent 129 in the connector, such as in the female connector, to release excess fluid or pressure when the connection is made. The vent can comprise a passive-one way valve, for example.



FIG. 3C shows a cutaway view of the connector of FIGS. 3A-4B in the disconnected configuration. The female connector can include one or more o-rings 132 disposed within the jack of the female connector 114 that either surround or are positioned on both sides of the female electrical contacts 134 also disposed within the jack. In some embodiments, other fluid-sealing mechanisms may be employed in lieu of, or in addition to, the o-rings. The o-rings 132 surrounding male electrical contacts 134 can be implemented as wiper seals, as shown in FIG. 3C. The contacts and o-rings are configured to form an interference fit with male electrical contacts 136 on the plug of the male connector 120 to be inserted.


The o-rings acting as wiper seals are configured to perform two functions: they “wipe” the male connector of fluid, debris, and/or bodily fluids during insertion, and also electrically isolate the electrical connection between the female and the male electrical contacts when the male connector is fully inserted into the female connector. In FIG. 3C, the female connector is shown having three female electrical contacts 134, which are configured to couple to three male electrical contacts 136 when the male connector 120 is inserted into the female connector 114. Electrical interfaces 118 and 124 can then carry power and control signals through the female connector 114 and male connector 120, respectively.



FIG. 3D shows a close-up view of the o-rings 132 and female electrical contacts 134 of the female connector 114. The female electrical contacts can comprise “canted” or cantilevered springs, as shown, which allows for movement of the female electrical contacts as they engage their corresponding male electrical contacts. An example of a canted spring for an electrical connector is shown and described in U.S. Pub. No. 2012/0174398, the entire contents of which is incorporated herein for all purposes by reference.


In a preferred embodiment, the female electrical contacts, in the form of cantilevered springs, can comprise platinum iridium alloy (Pt-Ir). Platinum iridium has been chosen for its high corrosion resistance. This is particularly important for implanted devices because, in the exemplary embodiment, the connector is saturated in blood and bodily fluids when disconnected inside the body. Although Pt-Ir exemplifies excellent corrosion resistance, its mechanical properties and poor manufacturability make it unsuitable for connector applications. This is particularly true for spring-like elements as described here. By contrast, conventional medical devices typically use other materials which are easier to manufacture. For example, pacemakers typically use MP35N for connectors which can be resistance welded to the wire. These materials are sufficient when exposed to most bodily fluids but have insufficient resistance when saturated in blood for long periods. These materials typically will corrode and fail when exposed to continuous voltages from a high voltage implanted medical device. Pacemakers are typically placed subcutaneously in a pacemaker pocket in the upper torso in part to limit exposure to stresses and strains. The pacemaker location is also relatively easy to access for component replacement. By contrast, the exemplary embodiment illustrates a connector placed deep in the abdominal area where the connector is exposed to high pull forces and stresses. This application is far more demanding than the typical medical application. In addition to the anatomical differences, the high power run through the exemplary connector (e.g., several watts or more of continuous power) further increases the risk of corrosion compared to conventional devices like pacemaker leads.


In one specific embodiment, the cantilevered spring female electrical contacts can have a non-uniform cross-section, where the cantilever is thickest at the point where the contact anchors to the female connector and thins towards the tip of the spring, so deflection is observed towards the tip. The cross section of the female electrical contact can be rectangular or circular, for example. The wiper seals can comprise an electrically isolating material designed to isolate the contacts 419 of the female connector. The wiper seals can be configured to scrape, wipe, or remove fluid or other debris from the male connector as it is inserted into the female connector. One will appreciate from the foregoing that the above configuration provides double sealing. The o-rings isolate individual electrical contacts from the others. In addition, the wiper seals also provide isolation. In this manner a secure and isolated connection is formed with each contact.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. An implantable connector configured to carry power and control signals to a medical device, comprising: a female connector comprising: a jack;one or more wiper seals disposed in the jack; andone or more cantilevered electrical spring contacts disposed in the jack and surrounded by the one or more wiper seals, wherein each of the one or more cantilevered electrical spring contacts is positioned in a groove defined in a respective wiper seal of the one or more wiper seals; anda male connector comprising: a plug adapted to be inserted into the jack of the female connector; andone or more electrical contacts disposed on the plug, the one or more electrical contacts configured to be electrically coupled to the one or more cantilevered electrical spring contacts and wiped clean of bodily fluid by the one or more wiper seals when the plug of the male connector is inserted into the jack of the female connector.
  • 2. The connector of claim 1 wherein the female connector further comprises a vent.
  • 3. The connector of claim 2 wherein the vent comprises a passive one-way valve.
  • 4. The connector of claim 1 wherein the one or more cantilevered electrical spring contacts each have a non-uniform cross-section.
  • 5. The connector of claim 4 wherein each of the one or more cantilevered electrical spring contacts extends from an anchor end to a tip end, and wherein a first cross-section at the anchor end is larger than a second cross-section at the tip end.
  • 6. The connector of claim 1 wherein the cantilevered electrical spring contacts comprise platinum iridium.
  • 7. The connector of claim 1 wherein the female connector is formed on a bulkhead connector.
  • 8. The connector of claim 1 wherein the male connector is formed on a driveline cable.
  • 9. The connector of claim 1 wherein the one or more cantilevered electrical spring contacts comprise three electrical spring contacts.
  • 10. The connector of claim 1 wherein the one or more electrical contacts disposed on the plug comprise three electrical contacts.
  • 11. The connector of claim 1, wherein the male connector further comprises a strain relief.
  • 12. The connector of claim 1, wherein the female connector further comprises a set locking screw.
  • 13. The connector of claim 12, wherein the male connector further comprises a set screw locking groove configured to engage the set locking screw.
  • 14. The connector of claim 1 wherein the each of the one or more wiper seals comprises an o-ring.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage application of International Application No. PCT/US2015/019174, filed Mar. 6, 2015, titled “ELECTRICAL CONNECTORS FOR IMPLANTABLE DEVICES”, which claims the benefit of priority to U.S. Provisional Appln. No. 61/949,068, filed Mar. 6, 2014, titled “ELECTRICAL CONNECTORS FOR IMPLANTABLE DEVICES”, the contents of which are incorporated by reference herein in their entireties. This application is related to U.S. Provisional Appln. No. 61/794,258, which is incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/019174 3/6/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/134871 9/11/2015 WO A
US Referenced Citations (292)
Number Name Date Kind
4041955 Kelly et al. Aug 1977 A
4352960 Dormer et al. Oct 1982 A
4561443 Hogrefe et al. Dec 1985 A
4561444 Livingston et al. Dec 1985 A
4630615 Yomtov Dec 1986 A
4679560 Galbraith Jul 1987 A
4726378 Kaplan Feb 1988 A
4736747 Drake Apr 1988 A
4924171 Baba et al. May 1990 A
4945305 Blood Jul 1990 A
5070223 Colasante Dec 1991 A
5076270 Stutz, Jr. Dec 1991 A
5346458 Affeld Sep 1994 A
5350413 Miller et al. Sep 1994 A
5569156 Mussivand Oct 1996 A
5630836 Prem et al. May 1997 A
5690693 Wang et al. Nov 1997 A
5702431 Wang et al. Dec 1997 A
5755748 Borza May 1998 A
5771438 Palermo et al. Jun 1998 A
5831248 Hojyo et al. Nov 1998 A
5948006 Mann Sep 1999 A
6123726 Mori et al. Sep 2000 A
6149683 Lancisi et al. Nov 2000 A
6212430 Kung Apr 2001 B1
6296533 Grubbs et al. Oct 2001 B1
6312338 Sato et al. Nov 2001 B1
6320354 Sengupta et al. Nov 2001 B1
6324431 Zarinetchi et al. Nov 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6332810 Bareel Dec 2001 B1
6389318 Zarinetchi et al. May 2002 B1
6400991 Kung Jun 2002 B1
6442434 Zarinetchi et al. Aug 2002 B1
6451055 Weiss Sep 2002 B1
6458164 Weiss Oct 2002 B1
6478820 Weiss Nov 2002 B1
6553263 Meadows et al. Apr 2003 B1
6579315 Weiss Jun 2003 B1
6591139 Loftin et al. Jul 2003 B2
6605032 Benkowski et al. Aug 2003 B2
6647298 Abrahamson et al. Nov 2003 B2
6650213 Sakurai et al. Nov 2003 B1
6723039 French et al. Apr 2004 B2
6772011 Dolgin Aug 2004 B2
6801807 Abrahamson Oct 2004 B2
6810289 Shaquer Oct 2004 B1
6850803 Jimenez et al. Feb 2005 B1
6894456 Tsukamoto et al. May 2005 B2
6895281 Amundson et al. May 2005 B1
6949065 Sporer et al. Sep 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967621 Cadotte, Jr. et al. Nov 2005 B1
6985773 Von Arx et al. Jan 2006 B2
7015769 Schulman et al. Mar 2006 B2
7107103 Schulman et al. Sep 2006 B2
7126310 Barron Oct 2006 B1
7225032 Schmeling et al. May 2007 B2
7246040 Borg et al. Jul 2007 B2
7286880 Olson et al. Oct 2007 B2
7299095 Barlow Nov 2007 B1
7428438 Parramon et al. Sep 2008 B2
7471986 Hatlestad Dec 2008 B2
7496733 Altman et al. Feb 2009 B2
7505816 Schmeling et al. Mar 2009 B2
7515012 Schulman et al. Apr 2009 B2
7522878 Baarman Apr 2009 B2
7532901 Lafranchise et al. May 2009 B1
7565187 Dynok et al. Jul 2009 B1
7571007 Erickson et al. Aug 2009 B2
7574173 Terranova et al. Aug 2009 B2
7587241 Parramon et al. Sep 2009 B2
7599743 Hassler et al. Oct 2009 B2
7650187 Gruber et al. Jan 2010 B2
7650192 Wahlstrand Jan 2010 B2
7711433 Davis et al. May 2010 B2
7720546 Ginggen et al. May 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7774069 Olson et al. Aug 2010 B2
7782190 Martin et al. Aug 2010 B1
7805200 Kast et al. Sep 2010 B2
7812481 Iisaka et al. Oct 2010 B2
7818036 Lair et al. Oct 2010 B2
7818037 Lair et al. Oct 2010 B2
7825543 Karalis et al. Nov 2010 B2
7830114 Reed Nov 2010 B2
7865245 Torgerson et al. Jan 2011 B2
7872367 Recksiek et al. Jan 2011 B2
7904170 Harding Mar 2011 B2
7932696 Peterson et al. Apr 2011 B2
7962222 He et al. Jun 2011 B2
RE42682 Barreras et al. Sep 2011 E
8076801 Karalis et al. Dec 2011 B2
8081925 Parramon et al. Dec 2011 B2
8096954 Stahmann et al. Jan 2012 B2
8140168 Olson et al. Mar 2012 B2
8150529 Snell et al. Apr 2012 B2
8165694 Carbunaru et al. Apr 2012 B2
8185212 Carbunaru et al. May 2012 B2
8193766 Rondoni et al. Jun 2012 B2
8203434 Yoshida Jun 2012 B2
8244367 Wahlstrand et al. Aug 2012 B2
8247926 Issa et al. Aug 2012 B2
8258653 Kitamura et al. Sep 2012 B2
8265770 Toy et al. Sep 2012 B2
8278784 Cook et al. Oct 2012 B2
8292052 Bohori et al. Oct 2012 B2
8299652 Smith et al. Oct 2012 B2
8301079 Baarman Oct 2012 B2
8319473 Choi et al. Nov 2012 B2
8362742 Kallmyer Jan 2013 B2
8373310 Baarman et al. Feb 2013 B2
8378522 Cook et al. Feb 2013 B2
8378523 Cook et al. Feb 2013 B2
8463395 Forsell Jun 2013 B2
8489200 Zarinetchi et al. Jul 2013 B2
8551163 Aber et al. Oct 2013 B2
8562508 Dague et al. Oct 2013 B2
8581793 Carr Nov 2013 B2
8587154 Fells et al. Nov 2013 B2
8620447 D'Ambrosio et al. Dec 2013 B2
8628460 Yomtov et al. Jan 2014 B2
8629578 Kurs et al. Jan 2014 B2
8668473 Larose et al. Mar 2014 B2
8694117 Aghassian et al. Apr 2014 B2
8810071 Sauerlaender et al. Aug 2014 B2
8849415 Bedenbaugh Sep 2014 B2
8884468 Lemmens et al. Nov 2014 B2
8909351 Dinsmoor et al. Dec 2014 B2
8971958 Frikart et al. Mar 2015 B2
9002468 Shea et al. Apr 2015 B2
9106083 Partovi Aug 2015 B2
9192704 Yomtov et al. Nov 2015 B2
9302093 Mashiach Apr 2016 B2
9515494 Kurs et al. Dec 2016 B2
9515495 Kurs et al. Dec 2016 B2
9560787 Kallmyer et al. Jan 2017 B2
20020038138 Zarinetchi et al. Mar 2002 A1
20020087204 Kung et al. Jul 2002 A1
20020093456 Sawamura et al. Jul 2002 A1
20030073348 Ries Apr 2003 A1
20030171792 Zarinetchi et al. Sep 2003 A1
20040138725 Forsell Jul 2004 A1
20040256146 Frericks Dec 2004 A1
20050006083 Chen et al. Jan 2005 A1
20050090883 Westlund et al. Apr 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060199997 Hassler et al. Sep 2006 A1
20060271129 Tai et al. Nov 2006 A1
20070096686 Jimenez et al. May 2007 A1
20070123948 Dal Molin May 2007 A1
20070142696 Crosby et al. Jun 2007 A1
20070191706 Calderon et al. Aug 2007 A1
20080009198 Marino Jan 2008 A1
20080027293 Vodermayer et al. Jan 2008 A1
20080054638 Greene et al. Mar 2008 A1
20080100294 Rohling et al. May 2008 A1
20080149736 Kim et al. Jun 2008 A1
20080167531 McDermott Jul 2008 A1
20080211320 Cook et al. Sep 2008 A1
20090018616 Quick et al. Jan 2009 A1
20090051224 Cook et al. Feb 2009 A1
20090072628 Cook et al. Mar 2009 A1
20090081943 Dobyns et al. Mar 2009 A1
20090174264 Onishi et al. Jul 2009 A1
20090212736 Baarman et al. Aug 2009 A1
20090226328 Morello Sep 2009 A1
20090270679 Hoeg et al. Oct 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20100019985 Bashyam et al. Jan 2010 A1
20100033021 Bennett Feb 2010 A1
20100035453 Tronnes et al. Feb 2010 A1
20100045114 Sample et al. Feb 2010 A1
20100063347 Yomtov et al. Mar 2010 A1
20100066305 Takahashi et al. Mar 2010 A1
20100069992 Aghassian et al. Mar 2010 A1
20100109958 Haubrich et al. May 2010 A1
20100114143 Albrecht et al. May 2010 A1
20100122995 Thomas et al. May 2010 A1
20100171368 Schatz et al. Jul 2010 A1
20100184371 Cook et al. Jul 2010 A1
20100194334 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100211134 Forsell Aug 2010 A1
20100222848 Forsell Sep 2010 A1
20100222849 Forsell Sep 2010 A1
20100225174 Jiang Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100253340 Corum et al. Oct 2010 A1
20100256708 Thornton et al. Oct 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100308939 Kurs Dec 2010 A1
20100314946 Budde et al. Dec 2010 A1
20100331919 Digiore et al. Dec 2010 A1
20110025132 Sato Feb 2011 A1
20110043050 Yabe et al. Feb 2011 A1
20110046699 Mazanec Feb 2011 A1
20110057607 Carobolante Mar 2011 A1
20110101790 Budgett May 2011 A1
20110109263 Sakoda et al. May 2011 A1
20110115431 Dunworth et al. May 2011 A1
20110127848 Ryu et al. Jun 2011 A1
20110148215 Marzetta et al. Jun 2011 A1
20110178361 Yomtov Jul 2011 A1
20110181235 Walley et al. Jul 2011 A1
20110205083 Janna et al. Aug 2011 A1
20110234155 Chen et al. Sep 2011 A1
20110241436 Furukawa Oct 2011 A1
20110245892 Kast et al. Oct 2011 A1
20110266880 Kim et al. Nov 2011 A1
20110276110 Whitehurst et al. Nov 2011 A1
20110278948 Forsell Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110291613 Rosik et al. Dec 2011 A1
20110295345 Wells et al. Dec 2011 A1
20110298294 Takada et al. Dec 2011 A1
20110301667 Olson et al. Dec 2011 A1
20110313238 Reichenbach et al. Dec 2011 A1
20120001485 Uchida Jan 2012 A1
20120032522 Schatz et al. Feb 2012 A1
20120039102 Shinoda Feb 2012 A1
20120057322 Waffenschmidt Mar 2012 A1
20120065458 Tol Mar 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120091951 Sohn Apr 2012 A1
20120104997 Carobolante May 2012 A1
20120109256 Meskins et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120146575 Armstrong et al. Jun 2012 A1
20120149229 Kearsley et al. Jun 2012 A1
20120150259 Meskens Jun 2012 A1
20120153739 Cooper et al. Jun 2012 A1
20120153954 Ota et al. Jun 2012 A1
20120157753 D'Ambrosio Jun 2012 A1
20120157754 D'Ambrosio Jun 2012 A1
20120158407 Forsell Jun 2012 A1
20120161539 Kim et al. Jun 2012 A1
20120164943 Bennett Jun 2012 A1
20120169132 Choudhary et al. Jul 2012 A1
20120169133 Lisi et al. Jul 2012 A1
20120169137 Lisi et al. Jul 2012 A1
20120169139 Kudo Jul 2012 A1
20120169278 Choi et al. Jul 2012 A1
20120175967 Dibben et al. Jul 2012 A1
20120235364 Wang et al. Sep 2012 A1
20120239118 Ozawa et al. Sep 2012 A1
20120245649 Bohori et al. Sep 2012 A1
20120245664 Smith et al. Sep 2012 A1
20120259398 Chen et al. Oct 2012 A1
20120274148 Sung et al. Nov 2012 A1
20120306433 Kim et al. Dec 2012 A1
20130007949 Kurs et al. Jan 2013 A1
20130060103 Bergida et al. Mar 2013 A1
20130119773 Davis May 2013 A1
20130127253 Stark et al. May 2013 A1
20130149960 Dec et al. Jun 2013 A1
20130159956 Verghese et al. Jun 2013 A1
20130190551 Callaway et al. Jul 2013 A1
20130197607 Wilder et al. Aug 2013 A1
20130214731 Dinsmoor Aug 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130271088 Hwang et al. Oct 2013 A1
20130289334 Badstibner et al. Oct 2013 A1
20130310630 Smith et al. Nov 2013 A1
20130320773 Schatz et al. Dec 2013 A1
20130331638 Cameron et al. Dec 2013 A1
20140005466 Crosby et al. Jan 2014 A1
20140011447 Konanur et al. Jan 2014 A1
20140028110 Petersen et al. Jan 2014 A1
20140028111 Hansen et al. Jan 2014 A1
20140031606 Hansen et al. Jan 2014 A1
20140152252 Wood Jun 2014 A1
20140163644 Scott et al. Jun 2014 A1
20140265620 Hoarau et al. Sep 2014 A1
20140265621 Wong et al. Sep 2014 A1
20140275727 Bonde et al. Sep 2014 A1
20150123654 Gagnon et al. May 2015 A1
20150157853 Verzal Jun 2015 A1
20150207330 Petersen Jul 2015 A1
20150207331 Petersen Jul 2015 A1
20150222127 Hansen Aug 2015 A1
20150222128 Hansen Aug 2015 A1
20150222139 Petersen et al. Aug 2015 A1
20150229289 Suzuki Aug 2015 A1
20150290373 Rudser et al. Oct 2015 A1
20160135684 Kappel et al. May 2016 A1
20160218432 Pope et al. Jul 2016 A1
20160250454 Beckham Sep 2016 A1
20160254703 Hansen Sep 2016 A1
20160254704 Hansen et al. Sep 2016 A1
Foreign Referenced Citations (39)
Number Date Country
202012000166 Apr 2013 DE
102012201073 Jul 2013 DE
0589608 Sep 1993 EP
1513241 Mar 2005 EP
2267864 Jun 2010 EP
2477034 Jul 2011 GB
H03109063 May 1991 JP
11-506646 Jun 1999 JP
2013094456 May 2013 JP
2013161640 Aug 2013 JP
2014160611 Sep 2014 JP
1020020089065 Nov 2002 KR
1020120007296 Jan 2012 KR
1020120077448 Jul 2012 KR
0001442 Jan 2000 WO
0074747 Dec 2000 WO
0137926 May 2001 WO
2005106901 Nov 2005 WO
2007053881 May 2007 WO
2008066941 Jun 2008 WO
2009018271 Feb 2009 WO
2009021220 Feb 2009 WO
2009023905 Feb 2009 WO
2009042977 Apr 2009 WO
2010030378 Mar 2010 WO
2010089354 Aug 2010 WO
2011081626 Jul 2011 WO
2011113934 Sep 2011 WO
2012002063 Jan 2012 WO
2012056365 May 2012 WO
2012087807 Jun 2012 WO
2012087811 Jun 2012 WO
2012087816 Jun 2012 WO
2012087819 Jun 2012 WO
2012099965 Jul 2012 WO
2012141752 Oct 2012 WO
2013110602 Aug 2013 WO
2013138451 Sep 2013 WO
2014039673 Mar 2014 WO
Non-Patent Literature Citations (12)
Entry
Bonde et al.; Promise of unrestricted mobility with innovative, portable wireless powering of a mechanical circulatory assist device; American Association for Thoracic Surgery; © 2012; 2 pgs.; retrieved Mar. 12, 2014 from the internet: http://aats.org/annualmeeting/Abstracts/2012/T8.cgi.
Chargepoint, Inc.; −chargepoin+®; product brochure; 4 pgs.; © 2014; retrieved Mar. 12, 2014 from the internet: http://www.chargepoint.com/network/.
Dixon, Jr.; Eddy current losses in transformer windings and circuit wiring; Unitrode Corp. Seminar Manual (SEM600); Watertown, MA; 12 pgs.; 1988.
Evatran; PluglessTM Level 2 EV Charging System (3.3kW); product brochure; 7 pgs.; retrieved Mar. 12, 2014 from the internet: http://www.pluglesspower.com/tech-specs/.
Ferret, B.; Electric vehicles get big boost!; Renewable Energy World; 3 pgs.; Jul. 30, 2012; retrieved Jul. 30, 2012 from the internet: http://www.renewableenergyworld.com/rea/blog/post/2012/07/.
Motavalli, Jim; WiTricity Takes Its Car-Charging Technology Out for a Road Test; New York Times; 3 pgs.; Jul. 25, 2012; retrieved Mar. 12, 2014 from the internet: http://wheels.blogs.nytimes.com/2012/07/25/witricity-takes-its-car-charging-technology-out-for-a-road-test/.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for PCT Application No. PCT/US2015/051474, dated Dec. 30, 2015.
Petersen et al.; U.S. Appl. No. 14/414,840 entitled “Computer Modeling for Resonant Power Transfer Systems,” filed Jan. 14, 2015.
Development and Implementation of RFID Technology, Ed. Cristina Turcu, Feb. 2009, pp. 28-30, 93-97.
Merli, Francesco, et al., “Design, Realization and Measurements of a Miniature Antenna for Implantable Wireless Communication Systems”, IEEE Transaction on Antennas and Propagation, vol. 59, No. 10, Oct. 2011, pp. 3544-3555.
Merli, Francesco, et al.,“The Effect of Insulating Layers on the Performance of Implanted Antennas”, IEEE Transaction on Antennas and Propagation, vol. 59, No. 1, Jan. 2011, pp. 21-31.
Abadia, Javier, et al., 3D-Spiral Small Antenna Design and Realization for Biomdical Telemetry in the MICS Band. Radioengineering, vol. 18, No. 4, Dec. 2009, pp. 359-367.
Related Publications (1)
Number Date Country
20160367819 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
61949068 Mar 2014 US