Claims
- 1. An electrical connector arranged for low-loss transmission of electrical signals along a plurality of impedance controlled paths between very high speed integrated circuits of first and second circuit means, said connector comprising: first and second ground plane means arranged for coupling to ground means of first and second circuit means and defining highly conductive planar surfaces in first and second ground planes in spaced generally parallel relation to each other, a plurality of signal contact elements arranged in spaced parallel relation to each other and in at least one contact element plane located between and in generally parallel relation to said first and second ground planes, each of said contact elements having a generally uniform spacial relationship to said ground planes with a certain inductance per unit length between each of said contact elements and said ground planes, said contact elements cooperating with said ground planes to define signal propagation paths in the form of electrical transmission lines having characteristic impedances which are functions of the inductances of said elements per unit length and the capacitances per unit length between said elements and said ground plane means, connector means for coupling of opposite ends of each of said contact elements to circuits of said first and second circuit means, and support means of a dielectric insulating material for supporting said signal contact elements in a certain fixed and electrically insulated relation to each other and to said first and second ground planes such that all of said contact elements have the same spacial relationship to said highly conductive surfaces in said first and second ground planes and such as to obtain a certain characteristic impedance which is the same for all of said plurality of signal propagation paths and which is substantially uniform along the full length of each of said plurality of signal propagation paths through said connector, wherein said first and second ground plane means define planar surfaces of very low inductance and resistance which interconnect the ground plane means of the first and second circuit means to prevent a build-up of any substantial potential difference between the interconnected first and second circuit means and to enhance propagation of very high speed signals between said first and second circuit means.
- 2. An electrical connector as defined in claim 1, said connector means being arranged to obtain a direct contact of one end of each of said contact elements with a contact surface of a conductor connected to said first circuit means and to obtain a conductive connection between an opposite end of each of said contact elements and said second circuit means.
- 3. An electrical connector ad defined in claim 1, wherein said plurality of signal contact elements include elements arranged in first and second rows in first and second contact element planes between and in generally parallel relation to said first and second ground planes and with a symmetrical relationship to said planes such as to provide said certain characteristic impedance which is the same for all of said plurality of signal propagation paths.
- 4. An electrical connector as defined in claim 3, wherein the spacing between said first contact element plane and said first ground plane and the dielectrical characteristics of insulating material therebetween are the same as the spacing between said second contact element plane and said second ground plane and the dielectric characteristics of insulating material therebetween.
- 5. An electrical connector as defined in claim 4, wherein said contact elements of said first and second rows are arranged in a staggered relationship such that each contact element of said first row is midway between positions which are opposite a pair of adjacent elements of said second row with the distance between said first and second planes being less than the distance between each contact element of said first row and adjacent contact elements of said second row so as to minimize the distance between said first and second ground planes in relation to the distances between contact elements of each row and those of the other row.
- 6. An electrical connector arranged for high velocity propagation of electrical signals along a plurality of paths between very high speed integrated circuits of first and second circuit means, said connector comprising: first, second and third ground plane means arranged for coupling to ground means of said first and second circuit means and defining planar grounds in first, second and third ground planes in spaced generally parallel relation to each other, said second ground plane being an isolation plane intermediate said first and third ground planes, a first plurality of signal contact elements associated with said first and second ground planes, a second plurality of contact elements associated with said second and third ground planes, said first plurality of elements being arranged in spaced parallel relation to each other and in at least one contact element plane located between and in generally parallel relation to said first and second ground planes, said second plurality of signal contact elements being arranged in spaced parallel relation to each other and in at least one contact element plane located between and in generally parallel relation to said second and third ground planes, each of said contact elements having a certain capacitance per unit length between each of said contact elements and said ground planes associated therewith, said contact elements cooperating with the ground planes associated therewith to define signal propagation paths in the form of electrical transmission lines having characteristic impedances which are functions of the inductances of said elements per unit length and the capacitances per unit length between said elements and said ground plane means, connector means for coupling of opposite ends of each of said contact elements to circuits of said first and second circuit means, and support means of a dielectric insulating material for supporting said signal contact elements in a certain fixed and electrically insulated relation to each other and to the ground planes associated therewith such as to obtain a certain characteristic impedance which is the same for all of said plurality of signal propagation paths and which is substantially uniform along the full length of each of said plurality of signal propagation paths through said connector.
- 7. An electrical connector as defined in claim 6, wherein said connector includes an outer metal sheet having a pair of spaced parallel opposite wall portions defining said first and third ground planes.
- 8. An electrical connector as defined in claim 7, wherein said second ground plane means includes at least one metal plate mid-way between said opposite wall portions of said shell.
- 9. An electrical connector as defined in claim 8, wherein said second ground plane means includes a plurality of metal plates mid-way between said opposite wall portions of said shell.
- 10. Apparatus for selectively coupling a plurality of transmission paths between circuits having signal and ground conductors with minimum impedance mismatch and maximum isolation, said apparatus comprising:
- a substantially planar coupling surface including a longitudinal dimension and a lateral dimension;
- a peripheral ground plane arranged around the periphery of said planar coupling surface, said peripheral ground plane including means for coupling said peripheral ground plane to a circuit ground conductor along the periphery of said planar coupling surface;
- an axial ground plane arranged along the longitudinal axis of said planar coupling surface, said axial ground plane including means for coupling said axial ground plane to a circuit around conductor along said longitudinal axis;
- a plurality of said signal contacts arranged in substantially equally spaced relation in two longitudinal rows along said longitudinal dimension of said planar coupling surface between a first side of said axial ground plane and said peripheral ground plane, a first row of said first side signal contact rows being adjacent to, and spaced a lateral distance from, said first side of said axial ground plane, and a second row of said first side signal contact rows being laterally adjacent to both said first of said first side signal contact rows and said peripheral ground plane and being laterally spaced said lateral distance from said peripheral ground plane, with said first and second row contacts of said first side signal contacts in a constant spaced relationship to each other to maintain substantially equidistant signal contact separation; and
- a plurality of second side signal contacts arranged substantially equally spaced in two longitudinal rows along said longitudinal dimension of said planar coupling surface between a second side of said axial ground plane and said peripheral ground plane, a first row of said second side signal contact rows adjacent to, and spaced said lateral distance from, said second side of said axial ground plane, and a second row of said second side signal contact rows laterally adjacent to both said first of said second side signal contact rows and said peripheral ground plane, and laterally spaced said lateral distance from said peripheral ground plane, with said first and second row contacts of said second side signal contacts in a constant spaced relationship to each other to maintain substantially equidistance signal contact separation;
- said substantially equidistant signal contact spacing and symmetrical relationship of all said signal contacts to said peripheral and axial ground planes thereby combining matched impedance transmission relative to said ground planes with increased signal isolation trough each of said signal contacts.
- 11. The apparatus recited in claim 10, wherein said constant spaced relationship between said first and second rows of said first and second side signal contacts is a staggered relationship.
- 12. An electrical connector arranged for high velocity propagation of electrical signals along a plurality of paths between very high speed integrated circuits of first and second circuit means, said connector comprising an insulating body, a plurality of elongated conductor elements spaced from one another and extending through said insulating body, means at each end of each of said elongated conductor elements for connecting respectively to one of said circuit means, said conductor elements being parallel to one another and arranged in rows which extend parallel to one another, and a plurality of planar ground plane members oriented with their planes parallel to said conductor elements and said rows and including external ground plane members disposed along the outer sides of said insulating body, each of said conductor elements having a spacial relationship to said ground plane members which is generally uniform along the length of the conductor element with a certain inductance per unit length and with a certain capacitance per unit length between each of said conductor elements and said ground plane members, and said conductor elements being symmetrically disposed in said insulating body relative to said ground plane members whereby each of said conductor elements provides a conductive path through said connector having substantially the same impedance as every other of said conductor elements.
Parent Case Info
This application is a continuation of my copending application Ser. No. 297,303, filed Jan. 13, 1989, which is a division of application Ser. No. 947,317, now U.S. Pat. No. 4,806,110, issued Feb. 21, 1989, said application Ser. No. 947,317 being a continuation-in-part of my application Ser. No. 876,179, filed June 19, 1986 and issued as U.S. Pat. No. 4,710,133 on Dec. 1, 1987.
US Referenced Citations (38)
Foreign Referenced Citations (4)
| Number |
Date |
Country |
| 143334 |
Aug 1980 |
DEX |
| 73957 |
Mar 1983 |
EPX |
| 2098412 |
Nov 1982 |
GBX |
| 2743406 |
May 1978 |
DEX |
Non-Patent Literature Citations (3)
| Entry |
| "High-Density Printed Circuit Connector", R. w. Callaway et al., IBM Technical Disclosure Bulletin, vol. 8, No. 3, Aug. 1965. |
| "Teradyne Technical Bulletin", 237, p. 8 with 339-17.LC and 1-29-85 noted on it. |
| "Shielded In-Line Electrical Multiconnector", Straus, IBM Technical Disclosure Bulletin, vol. 10, No. 3, Aug., 1967, p. 703. |
Divisions (1)
|
Number |
Date |
Country |
| Parent |
947317 |
Dec 1986 |
|
Continuations (1)
|
Number |
Date |
Country |
| Parent |
297303 |
Jan 1989 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
876179 |
Jun 1986 |
|