The subject matter described and/or illustrated herein relates generally to electrical contacts, and more particularly, to an assembly of mated electrical contacts.
Complementary electrical contacts are configured to mate together at a contact interface where mating elements of the complementary electrical contacts engage (i.e., physically contact) each other. Many electrical contact assemblies form a Hertzian style contact interface when the mating elements of the complementary electrical contacts engage each other. Hertzian contact interfaces are formed when the mating element of one of the complementary electrical contacts includes a curved surface that engages a curved or approximately flat surface of the mating element of the other complementary electrical contact. The curved surface(s) deforms slightly under the contact force that holds the mating elements in engagement. For example, a Hertzian style contact interface is formed when a mating element in the form of a spherical protrusion engages an approximately flat (i.e., planar) surface of the mating element of the complementary electrical contact.
Hertzian contact interfaces are not without disadvantages. For example, the mechanical and electrical distributions across the Hertzian contact interface are typically not coincident. Specifically, the regions within the Hertzian contact interface having the greatest mechanical contact pressure (i.e., the greatest normal load or the greatest normal pressure) have different locations within the Hertzian contact interface than the regions within the Hertzian contact interface that carry the greatest amount of electrical current (i.e., the greatest current density). For example, the maximum mechanical contact pressure may be located at the center of the Hertzian contact interface, while the maximum amount of electrical current is distributed across the outer perimeter of the Hertzian contact interface. As a result of the mechanical and electrical distributions not being coincident, only a portion (e.g., a minority) of the area of the Hertzian contact interface is contributing to the flow of electrical current, which may lead to greater overall contact resistance and/or a greater localized thermal response.
Moreover, in situations wherein a shear force is applied to the Hertzian contact interface (e.g., from vibrational and/or thermal effects), mechanical degradation of the Hertzian contact interface will first occur where the lateral deformation is the greatest but the mechanical contact pressure is the lowest. In other words, shear forces may cause the Hertzian contact interface to mechanically degrade (e.g., break, fracture, wear, and/or the like) first at the regions that carry the greatest amount of electrical current, which may reduce the amount of electrical current that is carried by the Hertzian contact interface to fall below desired levels and/or may cause the electrical contacts to completely lose electrical contact therebetween. Shear forces may be especially problematic for Hertzian contact interfaces that are formed from electrical contacts that include non-noble metal coatings (e.g., Sn), which may require a higher normal load to penetrate the inherent oxide film that forms on non-noble metal coatings.
In one embodiment, an electrical contact assembly includes a first electrical contact having a first mating element, and a second electrical contact having a second mating element. The first and second electrical contacts being configured to mate together at the first and second mating elements such that the first and second mating elements engage each other at a contact interface. A distribution of contact pressure across the contact interface at least partially coincides with a distribution of electrical current flow across the contact interface.
In another embodiment, an electrical contact assembly includes a first electrical contact having a first mating element, and a second electrical contact having a second mating element. The first and second electrical contacts are configured to mate together at the first and second mating elements such that the first and second mating elements engage each other at a contact interface. The contact interface includes a first asperity junction where the contact interface has the greatest current density and a second asperity junction where the contact interface has the greatest normal load, the first and second asperity junctions at least partially overlapping each other.
In another embodiment, an electrical contact assembly includes a first electrical contact having a first mating element, and a second electrical contact having a second mating element. The first and second electrical contacts are configured to mate together at the first and second mating elements such that the first and second mating elements engage each other at a contact interface. The first mating element and/or the second mating element has a periodic surface topology that includes approximately parallel valleys that are separated by peaks. The first and second mating elements are configured to engage each other at the peaks of the periodic surface topology such that the contact interface is at least partially defined by the peaks.
The electrical contacts 12 and 14 include mating elements 16 and 18, respectively. The electrical contacts 12 and 14 mate together at the mating elements 16 and 18. Specifically, the mating elements 16 and 18 engage each other to mate the electrical contacts 12 and 14 together. The mating elements 16 and 18 may be elements of larger segments of the electrical contacts 12 and 14, respectively. For example, the mating elements 16 and 18 may be elements of mating segments (e.g., arms, beams, fingers, plugs, receptacles, and/or the like) of the respective electrical contacts 12 and 14. The electrical contacts 12 and 14 may include other segments (not shown) in addition to mating segments, such as, but not limited to, mounting segments, termination segments, intermediate segments, housing segments, and/or the like. Each of the mating elements 16 and 18 may be referred to herein as a “first” and/or a “second” mating element.
The mating elements 16 and 18 engage each other at a contact interface 20, which is best seen in
In the exemplary embodiment of the assembly 10, the mating element 16 of the electrical contact 12 includes a depression 16a and the mating element 18 of the electrical contact 14 includes a protrusion 18a. The protrusion 18a is configured to be partially received into the depression when the mating elements 16 and 18 are engaged (i.e., when the electrical contacts 12 and 14 are mated together). In the exemplary embodiment of the assembly 10, the protrusion 18a and the depression 16a are each curved and the protrusion 18a has a greater radius of curvature R1 than the radius of curvature R2 of the depression 16a. Accordingly, the protrusion 18a is configured to be only partially received within the depression 16a. The protrusion 18a may be referred to herein as a “curved protrusion”, while the depression 16a may be referred to herein as a “curved depression”.
The protrusion 18a of the mating element 18 and the depression 16a of the mating element 16 may each have any respective radius of curvature R1 and R2 that enables the mating elements 18 and 16 to function as described and/or illustrated herein. Moreover, the radius of curvature R1 of the protrusion 18a may be greater than the radius of curvature R2 of the depression 16a by any amount that enables the mating elements 16 and 18 to function as described and/or illustrated herein.
In the exemplary embodiment of the assembly 10, the depression 16a and the protrusion 18a each have a spherical shape. Specifically, the depression 16a and the protrusion 18a each have the shape of a partial sphere. Although shown as each defining less than half of a sphere, the depression 16a and the protrusion 18a may each define any other amount (e.g., approximately half) of a sphere. Moreover, the depression 16a and the protrusion 18a may each have other curved shapes besides spherical shapes, such as, but not limited to, a non-circular shape, an oval shape, a parabolic shape, a curved shape that includes a varying radius of curvature, and/or the like. The depression 16a may be referred to herein as a “spherical depression”, while the protrusion 18a may be referred to herein as a “spherical protrusion”.
The depression 16a includes a rim 22. As will be described below, the rim 22 defines a portion of the contact interface 20. The mating elements 16 and 18 of the assembly 10 define a “rim only” geometry wherein the mating element 16 only engages the mating element 18 at the rim 22. In other words, the rim 22 defines the entirety of the portion of the contact interface 20 that is defined by the mating element 16. In the exemplary embodiment of the assembly 10, the rim 22 is circular because the depression 16a is spherical. But, the rim 22 may have other curved shapes (e.g., an oval shape, a parabolic shape, and/or the like). Moreover, the depression 16a and the protrusion 18a are not limited to curved shapes. Rather, the depression 16a and the protrusion 18a may each additionally or alternatively include any other shape, such as, but not limited to, rectangular cross-sectional shapes, square cross-sectional shapes, cross-sectional shapes having more than four sides, triangular cross-sectional shapes, and/or the like. The rim 22 may thus include non-curved shapes (e.g., square shapes, rectangular shapes, triangular shapes, more than four sided shapes, and/or the like) in addition or alternative to one or more curved shapes. In embodiments wherein the depression 16a and/or the protrusion 18a include non-curved shapes, the relative sizes of the depression 16a and the protrusion 18a may be selected to provide a rim only geometry at the contact interface 20.
As best seen in
The mating elements 16 and 18 may each be formed from any materials. In some embodiments, exterior surfaces of the mating elements 16 and/or 18 are defined by non-noble (e.g., Sn) and/or noble metal coatings. Examples of base materials and/or surface coating materials of each of the mating elements 16 and 18 include, but are not limited to, noble metals, non-noble metals, copper (Cu), copper alloys, aluminum (Al), aluminum alloys, zinc (Zn), zinc alloys, iron (Fe), iron alloys (including stainless steels), nickel (Ni), nickel alloys, silver (Ag), silver alloys, Bi, Bi alloys, gold (Au), gold alloys, tin (Sn), tin alloys, gold over palladium (Pd), gold over PdNi alloy, gold over NiP alloy, Au/NiP metallurgical combinations (e.g., AgNi, AgW, AgSnO, AgCdO, AgCu, and/or the like) and/or the like. In some embodiments, the mating elements 16 and 18 are formed from the substantially the same materials (e.g., have substantially similar surface coatings), while in other embodiments the mating elements 16 and 18 are formed from different materials. The mating elements 16 and 18 may be formed from any method, process, operation, and/or the like, such as, but not limited to, wire drawing operations and/or the like.
As can be seen in
For example, the asperity junctions 28 and 30 may overlap each other because the contact interface 20 has been more isolated (i.e., localized) to the surface regions 24 and 26 as compared to the broader surface areas of Hertzian contact interfaces of similarly sized mating elements. Moreover, because no mechanical contact is present inside the rim 22, the outer portion of the contact interface 20 experiences significantly higher surface pressure values, which results in higher deformation of the asperity junctions 28 and 30 and thereby leads to more effective disruption of any surface oxide/contamination films.
In the exemplary embodiment of the assembly 10, the asperity junctions 28 and 30 entirely overlap each other, such that the asperity junction 28 does not include any portion that does not overlap the asperity junction 30, and vice versa. In other words, the mechanical distribution of mechanical pressure forces along the contact interface 20 completely coincides with the electrical distribution of electrical energy along the contact interface 20. But, in other embodiments, the asperity junctions 28 and 30 only partially overlap each other, such that the asperity junction 28 includes a portion that does not overlap the asperity junction 30, and/or vice versa. In other words, the mechanical distribution of mechanical pressure forces along the contact interface 20 may only partially coincide with the electrical distribution of electrical energy along the contact interface 20. The area of the contact interface 20, the relative size difference between the protrusion 18a and the depression 16a (e.g., the difference between the radii of curvature R1 and R2), and/or the like may be selected to provide the asperity junctions 28 and 30 as at least partially overlapping.
In the exemplary embodiment of the assembly 50, the mating element 56 of the electrical contact 52 includes an approximately planar surface 56a and the mating element 58 of the electrical contact 54 includes a protrusion 58a. The protrusion 58a includes a tip 72 having a depression 74 extending therein. The depression 74 includes a rim 76. In the exemplary embodiment of the assembly 50, the depression 74 has a spherical shape, but the depression 74 may have other curved shapes besides spherical shapes, such as, but not limited to, a non-circular shape, an oval shape, a parabolic shape, a curved shape that includes a varying radius of curvature, and/or the like. In the exemplary embodiment of the assembly 50, the rim 76 is circular because the depression 74 is spherical. But, the rim 76 may have other curved shapes (e.g., an oval shape, a parabolic shape, and/or the like). Moreover, the depression 74 and rim 76 are not limited to curved shapes. Rather, the depression 74 may additionally or alternatively include any other shape, such as, but not limited to, rectangular cross-sectional shapes, square cross-sectional shapes, cross-sectional shapes having more than four sides, triangular cross-sectional shapes, and/or the like. The rim 76 may thus include non-curved shapes (e.g., square shapes, rectangular shapes, triangular shapes, more than four sided shapes, and/or the like) in addition or alternative to one or more curved shapes. The protrusion 58a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”. The depression 74 may be referred to herein as a “spherical depression” and/or a “curved depression”.
When the electrical contacts 52 and 54 are mated together, the mating elements 56 and 58 are engaged at the contact interface 60 such that the protrusion 58a engages a surface region 64 of the surface 56a of the mating element 56 at the rim 76 of the depression 74. Specifically, a surface region 78 of the protrusion 58a is engaged with the surface region 64 of the surface 56a of the mating element 56. The contact interface 20 is defined by the surface regions 78 and 64. The surface region 78 of the protrusion 58a is entirely defined by the rim 76 of the depression 74 such that the contact interface 60 has the “rim only” geometry discussed above.
The contact interface 60 may include a distribution of electrical energy and mechanical pressure forces along the contact interface 60. Such a distribution includes asperity junctions 68 where the contact interface 60 carries the greatest amount of electrical current and asperity junctions 70 where the contact interface 60 has the greatest mechanical contact pressure. The asperity junctions 68 and the asperity junctions 70 overlap (i.e., coincide with) each other. Accordingly, the mechanical distribution of mechanical pressure forces along the contact interface 60 coincides with the electrical distribution of electrical energy along the contact interface 60. In the exemplary embodiment of the assembly 50, the asperity junctions 68 and 70 entirely overlap each other. But, in other embodiments, the asperity junctions 68 and 70 only partially overlap each other.
The mating element 116 of the electrical contact 112 includes a groove 116a that extends a length along the mating element 116. The groove 116a extends the length along a central longitudinal axis 134. The groove 116a includes a rim 136 that extends along the length of the groove 116a. The rim 136 is defined by opposite rim segments 136a and 136b. The mating element 118 of the electrical contact 114 includes a protrusion 118a. The protrusion 118a is configured to be partially received into the groove 116a when the mating elements 116 and 118 are engaged. In the exemplary embodiment of the assembly 110, the protrusion 118a and the groove 116a are curved. The protrusion 118a has a greater radius of curvature R3 than the radius of curvature R4 of the groove 116a. The protrusion 118a and the groove 116a may each have any respective radius of curvature R3 and R4 that enables the mating elements 118 and 116 to function as described and/or illustrated herein. Moreover, the radius of curvature R3 of the protrusion 118a may be greater than the radius of curvature R4 of the depression 116a by any amount that enables the mating elements 116 and 118 to function as described and/or illustrated herein. The protrusion 118a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”, while the groove 116a may be referred to herein as a “cylindrical groove”.
The groove 116a and the protrusion 118a may each have other curved shapes besides the respective cylindrical and spherical shapes shown, such as, but not limited to, a non-circular shape, an oval shape, a parabolic shape, a curved shape that includes a varying radius of curvature, and/or the like. Moreover, the groove 116a and the protrusion 118a are not limited to curved shapes. Rather, the groove 116a and the protrusion 118a may each additionally or alternatively include any other shape, such as, but not limited to, rectangular cross-sectional shapes, square cross-sectional shapes, cross-sectional shapes having more than four sides, triangular cross-sectional shapes, and/or the like. In embodiments wherein the groove 116a and/or the protrusion 118a include non-curved shapes, the relative sizes of the groove 116a and the protrusion 118a may be selected to provide a rim only geometry at the contact interface 120.
When the electrical contacts 112 and 114 are mated together, a surface region 126 of the protrusion 118a is engaged with the rim 136 of the groove 116a. The contact interface 120 is defined by the surface regions 124 and 126 where the groove 116a and the protrusion 118a, respectively, engage each other. The surface region 124 of the groove 116a is entirely defined by the rim 136, such that the contact interface 120 has the “rim only” geometry discussed above.
The contact interface 120 may include a distribution of electrical energy and mechanical pressure forces along the contact interface 120. Such a distribution includes asperity junctions 128 where the contact interface 120 carries the greatest current density and asperity junctions 130 where the contact interface 120 has the greatest normal pressure. As best seen in
The mating element 156 includes an approximately planar surface 156a and the mating element 158 includes a protrusion 158a. The protrusion 158a includes a tip 172 having a groove 174 extending a length along the tip 172. The groove 174 includes a rim 176 that extends along the length of the groove and is defined by opposite rim segments 176a and 176b. In the exemplary embodiment of the assembly 150, the groove 174 has a cylindrical shape, but the groove 174 may have other curved shapes besides cylindrical shapes, such as, but not limited to, a non-circular shape, an oval shape, a parabolic shape, a curved shape that includes a varying radius of curvature, and/or the like. Moreover, the groove 174 is not limited to curved shapes. Rather, the groove 174 may additionally or alternatively include any other shape, such as, but not limited to, rectangular cross-sectional shapes, square cross-sectional shapes, cross-sectional shapes having more than four sides, triangular cross-sectional shapes, and/or the like. The protrusion 158a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”. The groove 174 may be referred to herein as a “cylindrical groove”.
When the electrical contacts 152 and 154 are mated together, the mating elements 156 and 158 are engaged at the contact interface 160 such that the protrusion 158a engages a surface region 164 of the surface 156a of the mating element 156 at the rim 176 of the groove 174. Specifically, a surface region 178 of the protrusion 158a is engaged with the surface region 164 of the surface 156a of the mating element 156. The contact interface 160 is defined by the surface regions 178 and 164. The surface region 178 of the protrusion 158a is entirely defined by the rim 176 of the depression 174 such that the contact interface 160 has the “rim only” geometry discussed above.
The contact interface 160 may include a distribution of electrical energy and mechanical pressure forces along the contact interface 160. Such a distribution includes asperity junctions 168 where the contact interface 160 carries the greatest amount of electrical current and asperity junctions 170 where the contact interface 160 has the greatest mechanical contact pressure. The asperity junctions 168 and the asperity junctions 170 overlap each other. Accordingly, the mechanical distribution of mechanical pressure forces along the contact interface 160 coincides with the electrical distribution of electrical energy along the contact interface 160. In the exemplary embodiment of the assembly 150, the asperity junctions 168 and 170 entirely overlap each other. But, in other embodiments, the asperity junctions 168 and 170 only partially overlap each other.
The mating element 218 of the electrical contact 214 includes a protrusion 218a. The mating element 216 of the electrical contact 212 includes a mating side 216a having a periodic surface topology 240 that includes valleys 242 that are separated by peaks 244 that are associated with the valleys 242. Specifically, the valleys 242 extend lengths along the periodic surface topology 240. The lengths of the valleys 242 extend approximately parallel to each other along the periodic surface topology 240. The peaks 244 extend lengths between the valleys 242 such that adjacent valleys 242 are separated by an associated peak 244 that extends therebetween.
When the electrical contacts 212 and 214 are mated together, the protrusion 218a is engaged with the mating side 216a of the mating element 216 at the peaks 244 of the periodic surface topology 240 of the mating side 216a. Specifically, a surface region 226 of the protrusion 218a is engaged with a surface region 224 of the mating side 216a that is entirely defined by the peaks 244. Although two peaks 244 are shown as engaged with the protrusion 218a, the surface region 224 may include any number of peaks 244 engaged with the surface region 226 of the protrusion 218a. The contact interface 220 is defined by the surface regions 224 and 226. Accordingly, the peaks 244 of the mating element 216 that are engaged with the protrusion 218a partially define the contact interface 220.
The contact interface 220 includes asperity junctions 228 where the contact interface 220 carries the greatest current density and asperity junctions 230 where the contact interface 220 has the greatest normal pressure. As shown herein, the asperity junctions 228 and the asperity junctions 230 overlap each other such that the mechanical distribution of normal pressure forces along the contact interface 220 coincides with the electrical distribution of electrical energy along the contact interface 220. In other words, the location(s) along the contact interface 220 where the current density is the greatest (i.e., the asperity junctions 228) overlap the location(s) along the contact interface 220 where the normal pressure is the greatest (i.e., the asperity junctions 230). For example, the asperity junctions 228 and 230 may overlap each other because the contact interface 220 has been more isolated (i.e., localized) to the surface regions 224 and 226 as compared to the broader surface areas of Hertzian contact interfaces of similarly sized mating elements. Moreover, using a periodic surface topology may create a low resistance contact that is nearly invariant against lateral position.
In the exemplary embodiment of the assembly 210, the asperity junctions 228 and 230 entirely overlap each other such that the mechanical distribution of normal pressure forces along the contact interface 220 completely coincides with the electrical distribution of electrical energy along the contact interface 220. But, in other embodiments, the asperity junctions 228 and 230 only partially overlap each other.
The area of the contact interface 220, the width W (
1/r=1/r1L+1/r1Q+1/r2L+1/r2Q,
where r is radius, 1 is the mating element 216, 2 is the mating element 218, L is the length radius, and Q is the cross radius. For example,
Referring again to
Although only the mating side 216a of the mating element 216 is shown as including the periodic surface topology 240, in other embodiments, the protrusion 218a of the mating element 218 may include a periodic surface topology in addition or alternative to the periodic surface topology 240 of the mating side 216a of the mating element 216. In embodiments wherein both the protrusion 218a of the mating element 218 and the mating side 216a of the mating element 216 include periodic surface topologies, the periodic surface topologies may be angled at any angle with respect to each other when the mating elements 216 and 218 are engaged. Specifically, the lengths of the valleys 242 of the periodic surface topology 240 of the protrusion 218a may extend at any angle relative to the valleys (not shown) of the periodic surface topology (not shown) of the mating side 216a of the mating element 216. In some embodiments, the periodic surface topologies of the protrusion 218a and the mating side 216a will be oriented approximately perpendicular to the each other when the mating elements 216 and 218 are mated together. In other embodiments, the periodic surface topologies of the protrusion 218a and the mating side 216a are oriented approximately parallel or at an oblique angle relative to each other when the mating elements 216 and 218 are mated together. In embodiments wherein the periodic surface topologies of the protrusion 218a and the mating side 216a are oriented approximately parallel, the sinus wavelengths of the periodic surface topologies may be selected as approximately the same. A perfectly aligned pair of peaks from the mating elements 216 and 218 may create the most coincidence between the asperity junctions 228 and 230. In embodiments wherein the periodic surface topologies of the protrusion 218a and the mating side 216a are not oriented approximately parallel, the sinus wavelengths of the periodic surface topologies may be different or approximately the same.
The mating element 416 of the electrical contact 412 includes an approximately planar surface 416a. The mating element 418 of the electrical contact 414 includes a protrusion 418a. The protrusion 418a has the periodic surface topology 440, which includes valleys 442 that are separated by peaks 444 that are associated with the valleys 442. The protrusion 418a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”.
When the electrical contacts 412 and 414 are mated together, the protrusion 418a is engaged with the approximately planar surface 416a at the peaks 444 of the periodic surface topology 440 of the protrusion 418a. Specifically, a surface region 426 of the protrusion 418a that is entirely defined by the peaks 444 is engaged with the approximately planar surface 416a at a surface region 424 of the surface 416a. Although two peaks 444 are shown as engaged with the surface 416a, the surface region 426 may include any number of peaks 444 engaged with the surface region 224 of the surface 416a. The contact interface 420 is defined by the surface regions 424 and 426, such that the peaks 444 of the mating element 416 that are engaged with the protrusion 418a define a portion of the contact interface 420.
The contact interface 420 includes asperity junctions 428 where the contact interface 420 carries the greatest current density and asperity junctions 430 where the contact interface 420 has the greatest normal pressure. The asperity junctions 428 and the asperity junctions 430 at least partially overlap each other such that the mechanical distribution of normal pressure forces along the contact interface 420 at least partially coincides with the electrical distribution of electrical energy along the contact interface 420.
The mating element 518 of the electrical contact 514 includes a protrusion 518a. The mating element 516 of the electrical contact 512 includes a mating side 516a having a concave shape. The mating side 516a of the mating element 516 includes the periodic surface topology 540, which includes valleys 542 that are separated by associated peaks 544. The protrusion 518a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”.
When the electrical contacts 512 and 514 are mated together, the protrusion 518a is engaged with the mating side 516a at the peaks 544 of the periodic surface topology 540 of the mating side 516a. Specifically, a surface region 526 of the protrusion 518a is engaged with a surface region 524 of the mating side 516a that is entirely defined by the peaks 544. Although two peaks 544 are shown as engaged with the protrusion 518a, the surface region 524 may include any number of peaks 544 engaged with the surface region 526 of the protrusion 518a. The contact interface 520 is defined by the surface regions 524 and 526 such that the peaks 544 of the mating element 516 that are engaged with the protrusion 518a partially define the contact interface 520.
The contact interface 520 includes asperity junctions 528 where the contact interface 520 carries the greatest current density and asperity junctions 530 where the contact interface 520 has the greatest normal pressure. The asperity junctions 528 and the asperity junctions 530 at least partially overlap each other such that the mechanical distribution of normal pressure forces along the contact interface 520 at least partially coincides with the electrical distribution of electrical energy along the contact interface 520.
The mating element 618 of the electrical contact 614 includes a protrusion 618a. The mating element 616 of the electrical contact 612 includes a mating side 616a having a concave shape. The mating side 616a of the mating element 516 and the protrusion include the periodic surface topologies 640 and 740, respectively. The periodic surface topologies 640 and 740 include respective valleys 642 and 742 that are separated by associated peaks 644 and 744, respectively. The protrusion 618a may be referred to herein as a “curved protrusion” and/or a “spherical protrusion”.
When the electrical contacts 612 and 614 are mated together, the protrusion 618a is engaged with the mating side 616a such that the peaks 644 of the periodic surface topology 640 of the mating side 516a are engaged with the peaks 744 of the periodic surface topology 740 of the protrusion 618a. Specifically, a surface region 626 of the protrusion 518a that is entirely defined by the peaks 744 is engaged with a surface region 624 of the mating side 616a that is entirely defined by the peaks 644. In the exemplary embodiment of the assembly 610, the periodic surface topologies 644 and 744 are oriented approximately perpendicular to each other. Specifically, the valleys 644 of the periodic surface topology 640 are oriented approximately perpendicular to the valleys 744 of the periodic surface topology 740. Although two peaks 644 are shown as engaged with two peaks 744, any number of the peaks 644 may be engaged with any number of the peaks 744. The contact interface 620 is defined by the surface regions 624 and 626 such that the peaks 644 and 744 define the contact interface 520.
The contact interface 620 includes asperity junctions 628 where the contact interface 620 carries the greatest current density and asperity junctions 630 where the contact interface 620 has the greatest normal pressure. The asperity junctions 628 and the asperity junctions 630 at least partially overlap each other such that the mechanical distribution of normal pressure forces along the contact interface 620 at least partially coincides with the electrical distribution of electrical energy along the contact interface 620.
The various electrical contact assembly embodiments described and/or illustrated herein may provide contact interfaces where the asperity junctions within the contact interface that carry the greatest current density overlap (i.e., coincide with) the asperity junctions within the contact interface that have the greatest normal pressure. The coincidence of the asperity junctions that carry greatest current density and the asperity junctions that have the greatest normal pressure may result in a lower contact resistance of the electrical contacts of the assembly and/or may lead to the electrical contacts having lower normal forces, for example as compared to electrical contact assemblies having Hertzian type contact interfaces. Moreover, The coincidence of the asperity junctions that carry greatest current density and the asperity junctions that have the greatest normal pressure may result in less localized thermal response, for example as compared to electrical contact assemblies having Hertzian type contact interfaces. Technical effects of the various embodiments may include, but are not limited to, reducing contact resistance, reducing normal forces, and/or reducing localized thermal responses. The reduction of contact resistance and/or normal forces may be best for mating elements that engage each other at non-noble metal finished surfaces. A lesser effect may be seen when mating more noble metal finished surfaces. The reduction of contact resistance and/or normal forces may be seen both when the mating elements have substantially the same materials at the contact interface (e.g., when mating like finishes) and when the mating elements have different materials at the contact interface (e.g., when mating different finishes).
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the subject matter described and/or illustrated herein without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described and/or illustrated herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description and the drawings. The scope of the subject matter described and/or illustrated herein should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application is a non-provisional application that claims priority to and the benefit of the filing date of U.S. Provisional Application No. 61/710,323, filed on Oct. 5, 2012, and entitled “ELECTRICAL CONTACT ASSEMBLY”.
Number | Name | Date | Kind |
---|---|---|---|
5329423 | Scholz | Jul 1994 | A |
6423918 | King et al. | Jul 2002 | B1 |
7365280 | Nishikawa et al. | Apr 2008 | B2 |
7687735 | Chien et al. | Mar 2010 | B2 |
8021200 | Myer | Sep 2011 | B2 |
8188392 | Isberg | May 2012 | B2 |
20030092294 | Matsunaga | May 2003 | A1 |
20060205290 | Narita | Sep 2006 | A1 |
20080136039 | Eppler | Jun 2008 | A1 |
20120315806 | Myer | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
9423475 | Oct 1994 | WO |
2005015692 | Feb 2005 | WO |
Entry |
---|
International Search Report, International Application No. PCT/US2013/059864, International Filing Date, Sep. 2013. |
Number | Date | Country | |
---|---|---|---|
20140099803 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61710323 | Oct 2012 | US |