1. Field of the Invention
The invention relates to an electrical contact element made of a stamped sheet metal part, which is intended to make contact with the electrical conduction path of a printed circuit board. The invention also relates to a contact-making device for servomotors with an adapter board and integrated contact elements in the form of a plug-type connection, for example.
2. Background Art
Contact-making devices for servomotors require a small design, since the servomotors, such as, for example stepper motors, which are used, for example, to operate an indicating instrument, such as a speedometer in a motor vehicle, for example, are themselves miniaturized drive elements, and as a rule only a small amount of space is available for the contact-making device.
The contact-making devices must make contact with correspondingly dimensioned counter contact pins arranged on the servomotor, for example, it being necessary for the point of contact to be vibration resistant and able to cope with relative motions caused by temperature fluctuations, for example, without affecting the transfer of energy.
The only known connections are soldered connections between the servomotor terminals and a printed circuit board, which are costly and require a lot of labor to assemble and repair.
The goal of the invention is to create a contact element and a plug-in electrical contact-making device to make contact between the servomotor terminals and the conduction paths of a printed circuit board which can withstand high contact forces while remaining vibration resistant and maintaining a secure contact, allow relative large movements at the point of contact without affecting the contact that is made, require little space, and allow simple assembly and repair when servomotors or contact-making devices are defective.
This is accomplished by a contact element having the features of claim 1 and a contact-making device having the features of claim [26].
The invention is explained in detail below using the drawing of a sample embodiment. The figures are as follows:
The edgewise-wound spring element 1 has, in the plane of its sheet metal, two spring arms 3, 4, arranged at a distance from one another, a spring arm base 5 connecting the spring arms, and, opposite the spring arm base 5, a plug-in gap 6 for a mating connector pin or a mating connector stud (not shown).
It is preferable for the edgewise-wound spring element 1 to be arc-shaped, at least in the area of the spring arm base, the one spring arm 4 continuing to be arc-shaped all the way to plug-in gap 6, while the other spring arm 3 extends away from the spring arm base 5 in a straight line.
In the plug-in gap 6, the free end 7 of spring arm 4 is bent out of the plane of the sheet metal in the shape of a convex arc, forming, in the convex arc, a first point of contact 8.
The free end of spring arm 3 has, attached to its outer edge, a contact tab 9 that is bent back 180° out of the plane of edgewise-wound spring element 1 in the direction of plug-in gap 6, so as to come to lie against spring arm 3, the free end 10 of the contact tab 9 being bent in the same direction as the free end 7 of spring arm 4 and also in the shape of a convex arc, forming a second point of contact 11 opposite point of contact 8.
On the outside of spring arm 3 there is, a small distance 13 shortly before contact tab 9, a connection bridge 12 that is bent down at a right angle in the same direction as contact tab 9 and that connects spring arm 3 to flat spring element 2, which, in the example shown, is made of three flat spring bars 14, 15, 16 arranged at right angles to one another, flat spring bar [14] being connected with flat spring bar 15 through a comer connection bridge 17, and flat spring bar 15 being connected with flat spring bar 16 through a comer connection bridge 18.
The flat spring bars 14, 15, 16 together form a U-shaped frame outside the edgewise-wound spring element 1, surrounding the latter; it is expedient for them to be equally wide and each to extend in a plane that is perpendicular to that of the sheet metal of the edgewise-wound spring element 1, the comer connection bridges 17, 18 being arranged in the plane of the sheet metal of the edgewise-wound spring element 1 at a small distance 19 from it, each being bent by 90° to the respective flat spring bar 14, 15 or 15, 16 and changing into the flat spring bars. It is expedient for flat spring bars 15, 16 to be made equally long, while flat spring bar 14 is somewhat shorter.
The fact that flat spring bars 14, 15, 16 are connected among one another through the corner connection bridges 17, 18 means that the flat spring bars are arranged at a distance to one another, with gaps 20 in the corner areas of the frame where they meet.
At the free end of flat spring element 2, that is at the free end of flat spring element 16, there is a connection bridge 21, which is bent at right angles to the free end of the edgewise-wound spring element 1 and which changes into a contact plate 22 arranged in the plane of the sheet metal of the edgewise-wound spring element 1. The contact plate 22 has a diagonally running inner edge 23 that is separated from the spring arm 4 of edgewise-wound spring element 1, a side edge 24 that is parallel to flat spring bar 16, and an outer edge 25 that is parallel to the flat spring bar 15, as well as a front edge 28 extending parallel to the side edge 24.
Accordingly, contact plate 22 has an approximately triangular shape, connection bridge 21 being connected to the side edge 24 and front edge 28 being located in the area in front of plug-in gap 6.
In the direction of outer edge 25, side edge 24 has, connected to it at a distance 26 to connection bridge 21, a retaining tab 27, which is bent at a right angle, like connection bridge 21, and is aligned with flat spring bar 16, being located in the plane of its sheet metal. It is expedient for retaining tab 27 to be shaped like a Christmas tree and have retaining or latching teeth 31 on its longitudinal edges. The front edge 28 has, connected to it through a connection bridge 29, a soldering pin 30, which is arranged perpendicular to the plane of the sheet metal of the edgewise-wound spring element 1, in the direction opposite that of the of the flat spring bar.
It is preferable for connection bridge 29 to be slightly arched in the direction opposite that in which soldering pin 30 extends, so that the connection zone of soldering pin 30 is somewhat stiffened.
A variant of the inventive contact element involves replacing soldering pin 30 by a soldering tongue 32 (
A preferred use of the inventive contact element is shown in
The holding cradles 33 are partitioned off by outer edge bars 35 and inner edge bars 36 which are of equal height, and one cradle floor 37 apiece, each retaining tab 27 of an inventive contact element being tightly seated in a corresponding slit (not shown) in the cradle floor 37 near the outer edge bar, and all other parts of the contact element being arranged so that they float freely and thus swing freely, that is do not touch, in the respective cradle 33.
Moreover, the plug-in gaps 6 of the contact elements are located over a plug-in hole 38 provided in the respective cradle floor 37, the plug-in holes 38 being arranged in the same place in each cradle 33. Accordingly, the four contact elements are positioned in the cradles 33 in such a way that their plug-in gaps 6 are located over the plug-in holes 38 and the soldering pins 30 project out of the respective cradle.
The adapter board 34 sits latched, or fastened in another way, with its side facing away from the cradles 33 on a servomotor 39, whose four terminal pins 40 reach through the plug-in holes 38 and the plug-in gaps 6 so as to make contact with them, and extend in the same direction as the soldering pins 30.
Bars 35, 36 of cradles 33 have a printed circuit board 41 sitting on them (
Printed circuit board 41 has penetrating holes 42 for soldering pins 30, which are soldered onto a conduction path with solder 43 (
Printed circuit board 41 is positioned so that it is detachably latched to adapter board 34 with latching clips 44 that are arranged around the edge on adapter board 34. Adapter board 34 itself is held by suitable means (not shown) on servomotor 39, preferably in such a way that it is tightly detachably latched to it.
Positioning pins 45 on adapter board 34 can additionally fix the position of printed circuit board 41 by plugging into corresponding positioning holes 46 in the printed circuit board 41, in particular plugging into them in a form-fit manner.
Another application of the inventive contact elements is shown in
The inventive contact elements consist essentially of a one-piece combination of an edgewise-wound spring element 1 that is resilient about an axis lying perpendicular to the plane of the sheet metal and a leaf spring or flat spring element 2 that is resilient about an axis lying in the plane of the sheet metal, the edgewise-wound spring element 1 ensuring high contact forces which are supported by the flat spring element 2, which acts as a reinforcing spring. Flat spring element 2 has a relatively soft characteristic curve, allowing it to compensate vibrations and other movements which act on the points of contact 8, 11 in plug-in gap 6, and to provide a permanent, constant contact force, the essential thing being that only the retaining tab 27 of each contact element is connected with the adapter board 34, while the remaining components of the contact element are arranged so that they are free swinging or free floating or free moving, and have sufficient space for spring travel.
The inventive contact-making device is simple to assemble and disassemble, so that in the case of a contact disturbance it is possible to exchange the entire contact-making device, or parts of it.
Edgewise-wound spring element 1 can also be U-shaped or made in another U-like shape, with two spring arms and one spring arm base, it being preferable for the spring arm base to be arc-shaped. In the preferred contact element shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2004 062 879 | Dec 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5061379 | White | Oct 1991 | A |
5188535 | Bertho et al. | Feb 1993 | A |
5597332 | Walbrecht | Jan 1997 | A |
5609495 | McHugh | Mar 1997 | A |
5616044 | Tsai | Apr 1997 | A |
5679010 | Hotea et al. | Oct 1997 | A |
6093053 | Horioka et al. | Jul 2000 | A |
6193567 | Hsieh | Feb 2001 | B1 |
6371784 | Scholz et al. | Apr 2002 | B1 |
6471534 | Lee | Oct 2002 | B1 |
6533591 | Lee | Mar 2003 | B1 |
6554633 | Nobuyuki et al. | Apr 2003 | B1 |
6824414 | Whyne et al. | Nov 2004 | B2 |
7074055 | Yang et al. | Jul 2006 | B2 |
20030013330 | Takeuchi | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060211310 A1 | Sep 2006 | US |