The present invention relates to electrical connectors and, more particularly, to female electrical contacts or terminals configured to receive bus bars.
Bus bar receptacles are configured to receive and establish electrical connections with corresponding electrical bus bars, which are typically blade-like and generally planar conductors. Together, bus bars and bus bar receptacles are used to establish electrical connections that may be capable of carrying high electrical currents.
The present invention provides a bus bar contact receptacle that is capable of receiving a bus bar that is inserted into the receptacle from two or more different directions, and which establishes multiple points of contact where discrete surfaces of the bus bar establish an electrical connection with the receptacle. For example, the bus bar contact receptacle may be configured to receive a bus bar inserted from any of four or more different directions, and may establish at least six points or locations of electrical contact with the bus bar. This arrangement provides or establishes a low-resistance electrical connection between a bus bar and the contact receptacle, which connection is capable of transmitting high current loads, and also permits a bus bar to be inserted into the receptacle from many different directions according to the needs of a particular application, so that the bus bar contact receptacle need not have its orientation changed to accommodate the direction from which a given bus bar will be inserted.
According to one form of the present invention, a contact receptacle for bus bars and male blade terminals includes a base with a pair of opposed contact portions extending therefrom. The base includes a front surface and a pair of opposite side edge regions from which the contact portions extend. The base defines a through-opening between opposite side edge regions of the base, so that the through-opening passes through the front surface. The contact portions extend forwardly of the front surface, and each has a respective inner contact surface for conductively engaging a blade terminal or a bus bar. The opening formed in the base is configured to receive a blade terminal that is oriented generally perpendicular to the base, and the base is thereby capable of establishing an electrical contact with the blade terminal at the opening, simultaneously with the contact portions conductively engaging the blade terminal.
In one aspect, the contact receptacle establishes six or more separate points of contact with a blade terminal or bus bar that is engaged with the contact receptacle in any of at least four different insertion directions. For example, a blade terminal or bus bar inserted from a distal or proximal end of the contact receptacle establishes at least three separate points of contact with each of the pair of opposed contact portions, and may further establish at least one additional point of contact with the front surface of the base. A blade terminal or bus bar inserted from a front (i.e. toward the front surface of the base) or from a rear, establishes at least three separate points of contact with each of the pair of opposed contact portions, and may further establish at least one additional point of contact with the base at an edge or surface defining the through-opening.
Optionally, each of the contact portions has a forward arm, a rearward arm, and a middle arm disposed between the forward and rearward arms. A bridge portion extends transversely between or across the forward and rearward arms at distal or ends thereof. Each of arms has an inner contact surface for conductively engaging a blade terminal or a bus bar at a distinct location therealong.
Thus, the bus bar contact receptacle of the present invention is capable of establishing a low-resistance, high-capacity electrical connection when a bus bar is inserted from any one of a plurality of different directions.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, an electrical bus bar contact receptacle 10 is configured to receive a bus bar 12 that is insertable into the receptacle 10 from different directions, such as from above (
Electrical bus bar contact receptacle 10 includes a generally planar base 14 having a front or top surface 16a and a rear or bottom surface 16b, a forward or distal end region 18a and a rearward or proximal end region 18b, and a left side edge region 20a and a right side edge region 20b (
The left contact portion 22 and the right contact portion 24 each has a respective forward or distal arm 22b, 24b at or near forward or distal end region 18a of the base 14, plus a respective rearward or proximal arm 22c, 24c at or near rearward or proximal end region 18b of the base 14. In addition to the forward/distal arms and rearward/proximal arms of each contact portion 22, 24, left contact portion 22 has a middle or central arm 22d positioned between the forward arm 22b and the rearward arm 22c, and right contact portion 24 has a middle or central arm 24d positioned between the forward arm 24b and the rearward arm 24c. Each arm (22b, 22c, 22d, 24b, 24c, 24d) is generally canted inwardly and has an outwardly-flared tip portion in a mirror-image arrangement, such as shown in
Referring to 9 and 10, the proximal or base end 22a of left contact portion 22 is spaced apart from the proximal end portion 24a of right contact portion 24 by a first distance generally corresponding to a width of the base 14 measured from the left side edge region 20a to the right side edge region 20b. The inner contact surfaces of left contact portion 22 are spaced from the inner contact surfaces of right contact portion 24 by a second distance that is less than the first distance generally corresponding to the width of base 14, including when left contact portion 22 and right contact portion 24 engage the blade terminal 30 or bus bar 12. Each of the inner contact surfaces of said opposed contact portions comprises a convex curved shape, such as shown in
It will be appreciated that, to ensure that a sufficient electrical contact is established between electrical bus bar contact receptacle 10 and the blade terminal 30 or bus bar 12, the arms of the left and right contact portions 22, 24 are spaced more closely together in the relaxed non-engaged position of
Optionally, and as best shown in
It will be appreciated that tip portion 30a of blade terminal 30 can be inserted from above or from the front (
Optionally, two or more contact receptacles 10 may be provided along a single contact, such as shown in
Accordingly, the electrical bus bar contact receptacle of the present invention provides multiple points or discrete areas of contact with a bus bar, male blade terminal, or the like, to thereby establish a low-resistance electrical contact capable of carrying relatively high current loads for its size. The receptacle is configured to receive a bus bar and/or blade terminal from multiple different directions, so that the contact receptacle is versatile in substantially any given orientation. Multiple contact receptacles can be placed within a desired circuit to establish a desired amount of contact surface area, further improving the versatility of the connections available.
Changes and modifications in the specifically-described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the benefit of U.S. provisional application Ser. No. 62/121,571, filed Feb. 27, 2015, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62121571 | Feb 2015 | US |