The present invention relates to an electrical connector for use with a CPU (Central Processing Unit), and particularly to an interface arrangement between the contact and the CPU.
The high speed transmission is required for the new communication system including the computer. The faster the signal transmission is, the more contacts the system requires. The traditional LGA (Land Grid Array) arrangement on the CPU may apply the normal force upon the corresponding contacts and the PCB (Printed Circuit Board) thereunder. When the amount of the contacts increases, the corresponding normal forces in the vertical direction is raised. When there are eight thousand more contacts, the corresponding normal force may reach two hundred and fifty kilograms, thus tending to damage either the connector or the PCB.
Therefore, it is desired to provide an electrical connector with a huge number of contacts for mating with the CPU while maintaining the relatively lower normal force for avoiding damaging either the electrical connector or the PCB thereunder
To achieve the above object, an electrical connector for mating with the CPU unit, includes an insulative housing with a plurality of passageways extending therethrough in the vertical direction. A plurality of contacts are disposed within the corresponding passageways, respectively. Each contact includes opposite first retaining section and second retaining section with an upward resilient contacting section linked therebetween, and a soldering section extending downwardly from the first retaining section. The contacting section includes opposite first contacting part unitarily extending from the first retaining section, and second contacting part unitarily extending from the second retaining section. The CPU unit forms a plurality of metal-coated recesses in an underside to receive the contacting section of the corresponding contacts, respectively. The first retaining section is essentially immovable in the passageway while the second retaining section is essentially movable relative to the housing in response to mating with the CPU.
Other advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
Referring to
Each contact 20 includes a first retaining section 21 and a second retaining section 22 spaced from and opposite to each other in a first horizontal direction with a contacting section 23 linked therebetween at corresponding upper ends thereof. The contacting section 23 upwardly protrudes out of the upper surface 1051. A soldering section 24 extends from a lower end of the first retaining section 21 with a solder ball 108 thereunder.
The contacting section 23 includes a first contacting part 231 downwardly linked with the first retaining section 21, and a second contacting part 232 downwardly linked with the second retaining section 22. The first contacting part 231 and the second contacting part 232 are upwardly converged toward each other with a horizontal third contacting part 233 linked therebetween at corresponding upper ends thereof. In this embodiment, the width of the third contacting part 233 is smaller than that of the first contacting part 231 and that of the second contacting part 232.
When the CPU 104 is mated within the electrical connector 100, the resilient contacting section 23 is inserted and received within the corresponding conductive recess 1042 which is coated with a metal layer as a via structure. Because the first contacting part 231 and a second contacting part 232 may provide resilient forces in the horizontal/transverse direction against the conductive layer in the corresponding recess 1042 for establishing the election connector, the connector 100 and the PCB 106 thereunder may not improperly endure the significant normal forces in the vertical direction. The horizontal third contacting part 233 may optionally contact the conductive layer in the vertical direction for enhancing the election connection between the contact 20 and the corresponding conductive recess 1042. In other words, the invention provides three contacting points, i.e., one in the vertical direction and two in the horizontal direction, compared with the traditional design with only one contacting point in the vertical direction.
In this embodiment, the first retaining section 21 is parallel to the second retaining section 22. The first retaining section 21 forms barbs 26 on two lateral sides. The second retaining section 22 forms a hook 221 engageable with the corresponding step 1055 for avoiding upward movement of the second retaining section 22 during unloading the CPU 104 away from the housing 105. A stopper 25 is formed on a bottom end of the second retaining section 22 to abut against the first retaining section 21 in the first horizontal direction to function as a supporting structure for enhancing resiliency of the contacting section 23
In brief, the contact 20 itself forms a loop structure for providing multiple transmission paths electrically, and a trough like contacting section for providing multiple contacting points electrically, both of which improve the electrical performance as well as the mechanical performance.
Although the present invention has been described with reference to particular embodiments, it is not to be construed as being limited thereto. Various alterations and modifications can be made to the embodiments without in any way departing from the scope or spirit of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201911366345.8 | Dec 2019 | CN | national |