The subject matter herein relates generally to electrical contacts for electrical connectors.
Electrical connectors are used to transmit data and/or power in various industries. The electrical connectors are often configured to repeatedly engage and disengage complementary electrical connectors. The process of mating the electrical connectors may be referred to as a mating operation. In some applications, such as in a backplane communication system, numerous electrical contacts are simultaneously mated. The mating forces of each of the electrical contacts are cumulative. A need remains for electrical contacts that are designed to lower mating forces during a mating operation.
In an embodiment, an electrical connector is provided that includes a connector housing configured to engage a mating connector during a mating operation. A contact array includes pin contacts coupled to the connector housing. Each of the pin contacts have an elongated body that extends along a longitudinal axis to a mating end. Each of the pin contacts has first and second deflectable beams at the mating end. The first deflectable beam are configured to engage a first flexible contact finger of the mating connector and deflect toward the central plane during the mating operation. The second deflectable beam is configured to engage a second flexible contact finger of the mating connector and deflect toward the central plane during the mating operation.
In another embodiment, a communication system is provided that includes a receptacle connector having a contact array of receptacle contacts each having first and second flexible contacts opposing each other across a socket gap. The communication system includes a header connector having a contact array of header contacts that engage corresponding receptacle contacts of the receptacle connector. Each of the header contacts have an elongated body that extends along a longitudinal axis to a mating end. Each of the header contacts has first and second deflectable beams at the mating end. The header contacts are received in the socket gaps of corresponding receptacle contacts during the mating operation. The first deflectable beam engages the first flexible contact finger of the mating connector such that the first deflectable beam is deflected inward toward the central plane and such that the first flexible contact finger is deflected outward away from the central plane. The second deflectable beam engages the second flexible contact finger of the mating connector such that the second deflectable beam is deflected inward toward the central plane and such that the second flexible contact finger is deflected outward away from the central plane.
In another embodiment, an electrical contact is provided that includes an elongated body that extends along a longitudinal axis. The elongated body has a U-shaped profile along the longitudinal axis defined by a generally planar first arm, a generally planar second arm parallel to the first arm and spaced apart by a body gap, and a folded end connecting the first and second arms. The first and second arms having exterior surfaces facing in opposite directions that are configured to engage corresponding first and second flexible contact fingers of a mating connector during a mating operation. The elongated body extends to a mating end. A first deflectable beam is provided at the mating end extending forward from the first arm. The first deflectable beam is pitched inward to at least partially extend across the body gap. The first deflectable beam is configured to engage the first flexible contact finger and deflect toward the central plane during the mating operation. A second deflectable beam is provided at the mating end extending forward from the second arm. The second deflectable beam is pitched inward to at least partially extend across the body gap. The second deflectable beam is configured to engage the second flexible contact finger and deflect toward the central plane during the mating operation.
Embodiments set forth herein may include electrical contacts, electrical connectors having the electrical contacts, and communication systems having the electrical connectors. Embodiments may be configured to reduce mating forces between electrical connectors compared to other known contacts, connectors, or systems. Although the illustrated embodiment includes electrical connectors that are used in high-speed communication systems, such as backplane or midplane communication systems, it should be understood that embodiments may be used in other communication systems or in other systems/devices that utilize electrical connectors. Accordingly, the inventive subject matter is not limited to the illustrated embodiment.
In order to distinguish similar elements in the detailed description and claims, various labels may be used. For example, an electrical connector may be referred to as a header connector, a receptacle connector, or a mating connector. Electrical contacts may be referred to as header contacts, pin contacts, electrical contacts or mating contacts. When similar elements are labeled differently (e.g., header contacts and pin contacts), the different labels do not necessarily require structural differences. For instance, in some embodiments, the header contacts described herein may be referred to as pin contacts.
The circuit board assembly 102 includes a circuit board 110 having a first board side 112 and second board side 114. In some embodiments, the circuit board 110 may be a backplane circuit board, a midplane circuit board, or a motherboard. In the illustrated embodiment, the circuit board assembly 102 includes a first header connector 116 mounted to and extending from the first board side 112 of the circuit board 110. The circuit board assembly 102 also includes a second header connector 118 mounted to and extending from the second board side 114 of the circuit board 110. In alternative embodiments, the circuit board assembly 102 may only include a single header connector 116 or may include multiple header connectors 116 on the same side of the circuit board 110.
The first and second header connectors 116, 118 include connector housings 117, 119, respectively. The first and second header connectors 116, 118 also include corresponding electrical contacts 120 that are electrically connected to one another through the circuit board 110. The electrical contacts 120 may be hereinafter referred to as header contacts 120 or pin contacts 120.
The circuit board assembly 102 includes a plurality of signal paths therethrough defined by the header contacts 120 and conductive vias 170 (shown in
The first and second header connectors 116, 118 include ground shields or contacts 122 that provide electrical shielding around corresponding header contacts 120. In an exemplary embodiment, the header contacts 120 are arranged in signal pairs 121 and are configured to convey differential signals. Each of the ground shields 122 may peripherally surround a corresponding signal pair 121. As shown, the ground shields 122 are C-shaped or U-shaped and cover the corresponding signal pair 121 along three sides. The ground shields 122 may have other shapes in alternative embodiments. The header connectors 116, 118 may be provided without ground shields in alternative embodiments.
The connector housings 117, 119 couple to and hold the header contacts 120 and the ground shields 122 in designated positions relative to each other. The connector housings 117, 119 may be manufactured from a dielectric material, such as a plastic material. Each of the connector housings 117, 119 includes a mounting wall 126 that is configured to be mounted to the circuit board 110 and shroud walls 128 that extend from the mounting wall 126. The shroud walls 128 cover portions of the header contacts 120 and the ground shields 122.
The first connector system 104 includes a first circuit board 130 and a first receptacle connector 132 that is mounted to the first circuit board 130. The first receptacle connector 132 is configured to be coupled to the first header connector 116 of the circuit board assembly 102 during a mating operation. The first receptacle connector 132 has a mating interface 134 that is configured to be mated with the first header connector 116. The first receptacle connector 132 has a board interface 136 configured to be mated with the first circuit board 130. In an exemplary embodiment, the board interface 136 is orientated perpendicular to the mating interface 134. When the first receptacle connector 132 is coupled to the first header connector 116, the first circuit board 130 is orientated perpendicular to the circuit board 110.
The first receptacle connector 132 includes a front housing or shroud 138. The front housing 138 is configured to hold a plurality of contact modules 140 side-by-side. As shown, the contact modules 140 are held in a stacked configuration generally parallel to one another. In some embodiments, the contact modules 140 hold a plurality of electrical contacts 142 (shown in
The second connector system 106 includes a second circuit board 150 and a second receptacle connector 152 coupled to the second circuit board 150. The second receptacle connector 152 is configured to be coupled to the second header connector 118 during a mating operation. The second receptacle connector 152 has a mating interface 154 configured to be mated with the second header connector 118. The second receptacle connector 152 has a board interface 156 configured to be mated with the second circuit board 150. In an exemplary embodiment, the board interface 156 is orientated perpendicular to the mating interface 154. When the second receptacle connector 152 is coupled to the second header connector 118, the second circuit board 150 is orientated perpendicular to the circuit board 110.
Similar to the first receptacle connector 132, the second receptacle connector 152 includes a front housing 158 used to hold a plurality of contact modules 160. The contact modules 160 are held in a stacked configuration generally parallel to one another. The contact modules 160 hold a plurality of receptacle contacts (not shown) that are electrically connected to the second circuit board 150. The receptacle contacts are configured to be electrically connected to the header contacts 120 of the second header connector 118. The receptacle contacts of the contact modules 160 may be similar or identical to the receptacle contacts 142.
In the illustrated embodiment, the first circuit board 130 is oriented generally horizontally. The contact modules 140 of the first receptacle connector 132 are orientated generally vertically. The second circuit board 150 is oriented generally vertically. The contact modules 160 of the second receptacle connector 152 are oriented generally horizontally. As such, the first connector system 104 and the second connector system 106 may have an orthogonal orientation with respect to one another.
In alternative embodiments, rather than using the midplane circuit board assembly 102 between the two connector systems 104, 106, the connector systems 104, 106 may be directly mated together. One of the connector systems 104 may define a receptacle connector system while the other connector system 106 may define a header connector system. The receptacle connector system may be identical to the connector system 104 shown in
The conductive vias 170 extend into the circuit board 110. In an exemplary embodiment, the conductive vias 170 extend entirely through the circuit board 110 between the first and second board sides 112, 114. In other embodiments, the conductive vias 170 extend only partially through the circuit board 110. The conductive vias 170 are configured to receive the header contacts 120 of the first and second header connectors 116, 118. For example, the header contacts 120 include compliant pins 172 that are configured to be loaded into corresponding conductive vias 170. The compliant pins 172 mechanically engage and electrically couple to the conductive vias 170. Likewise, at least some of the conductive vias 170 are configured to receive compliant pins 174 of the ground shields 122. The compliant pins 174 mechanically engage and electrically couple to the conductive vias 170. The conductive vias 170 that receive the ground shields 122 may surround the pair of conductive vias 170 that receive the corresponding pair of header contacts 120. The header contacts 120 and ground shields 122 may be electrically connected to the circuit board 110 by other components or processes in alternative embodiments.
The ground shields 122 are C-shaped and provide shielding on three sides of the signal pair 121. The ground shields 122 have a plurality of walls, such as three planar walls 176, 178, 180. The planar walls 176, 178, 180 may be integrally formed or alternatively, may be separate pieces. The compliant pins 174 extend from each of the planar walls 176, 178, 180 to electrically connect the planar walls 176, 178, 180 to the circuit board 110. The planar wall 178 defines a center wall or top wall of the ground shield 122. The planar walls 176, 180 define side walls that extend from the planar wall 178. The planar walls 176, 180 may be generally perpendicular to the planar wall 178. In alternative embodiments, other configurations or shapes for the ground shields 122 are possible in alternative embodiments. For example, more or fewer walls may be provided in alternative embodiments. The walls may be bent or angled rather than being planar. In other embodiments, the ground shields 122 may provide shielding for individual header contacts 120 or sets of contacts having more than two header contacts 120.
The header contact 120 includes a mating end 182 and a board end 184. The board end 184 is configured to engage the circuit board 110. The mating end 182 may represent the portion of the header contact 120 that is located furthest from the circuit board 110 or the mounting wall 126 and is the first to engage or interface with the mating contacts of the receptacle connector 152 (
The contact modules 140 are coupled to the front housing 138 such that the receptacle contacts 142 are received in corresponding contact openings 200. Optionally, a single receptacle contact 142 may be received in each contact opening 200. The contact openings 200 may be configured to receive corresponding header contacts 120 (
In some embodiments, the contact module 140 includes a conductive holder 210 fabricated from a conductive material to provide electrical shielding for the first receptacle connector 132. The conductive holder 210 is configured to support a frame assembly 220 that includes a plurality of the receptacle contacts 142. In the illustrated embodiment, the frame assembly 220 includes a pair of dielectric frames 230, 232 overmolded over leadframes that define the receptacle contacts 142. The receptacle contacts 142 include mating ends 240 that are configured to be mated with corresponding header contacts 120. Optionally, the receptacle contacts 142 are arranged as signal pairs 141.
The contact fingers 252, 254 have respective mating interfaces 262. The mating interfaces 262 of the contact fingers 252, 254 face each other with a contact-receiving gap 264 therebetween. In the illustrated embodiment, the corresponding mating interfaces 262 of the contact fingers 252, 254 are substantially paddle-shaped or tab-shaped. The mating interface 262 includes a flared portion that extends away from the opposing mating interface 262 to enlarge the contact-receiving gap 264. The curved contour of the mating interfaces 262 and the flared portions may facilitate receiving one of the header contacts 120 (
In
As described in greater detail below, when the contact fingers 252, 254 are in deflected conditions, each of the contact fingers 252, 254 may generate a normal force that presses the corresponding mating interface 262 against the corresponding header contact 120 in a direction toward the other mating interface 262. As such, the contact fingers 252, 254 may pinch the corresponding header contact 120 therebetween. To this end, each of the contact fingers 252, 254 may be configured to provide a designated normal force when the corresponding contact finger 252, 254 is in a deflected condition.
The first and second arms 302, 304 have exterior surfaces 310, 312, respectively, facing in opposite directions that define wiping surfaces and/or mating interfaces for the flexible contact fingers 252, 254 (shown in
The header contact 120 includes first and second deflectable beams 322, 324 at the mating end 182. The first and second deflectable beams 322, 324 are configured to be deflected in opposite directions. In an exemplary embodiment, the first and second deflectable beams 322, 324 are laterally offset with respect to one another. As such, the first and second deflectable beams 322, 324 bypass each other during the mating operation.
The first deflectable beam 322 extends forward from the first arm 302 and is angled inward. For example, the first deflectable beam 322 is pitched inward to at least partially extend across the body gap 308. In an exemplary embodiment, the first deflectable beam 322 is offset relative to the second deflectable beam 324 toward the outer edge 314 of the first arm 302 such that the first deflectable beam 322 is able to bypass the second deflectable beam 324 during the mating operation. The first deflectable beam 322 is configured to be engaged by the first flexible contact finger 252 during the mating operation. The first deflectable beam 322 is configured to be deflected toward the central plane 334 during the mating operation. For example, in the illustrated orientation, the first deflectable beam 322 will be deflected downward by the flexible contact finger 252.
The first deflectable beam 322 includes a sloped surface 330 extending to a tip 332 of the first deflectable beam 322. The sloped surface 332 is angled toward the second deflectable beam 324. Optionally, the tip 332 may pass across a central plane 334 of the header contact 120 that passes through the longitudinal axis 192 and is oriented generally parallel to the first and second arms 302, 304. The central plane 334 may be centered between the first and second arms 302, 304. The sloped surface 330 may be slightly forward facing to provide a lead-in for mating with the flexible contact finger 252. The sloped surface 330 provides a lead-in to the wiping surface defined by the exterior surface 310.
The second deflectable beam 324 extends forward from the second arm 304 and is angled inward. For example, the second deflectable beam 324 is pitched inward to at least partially extend across the body gap 308. In an exemplary embodiment, the second deflectable beam 324 is offset relative to the first deflectable beam 322 toward the folded end 306 such that the second deflectable beam 324 is able to bypass the first deflectable beam 322 during the mating operation. The second deflectable beam 324 is configured to be engaged by the second flexible contact finger 254 during the mating operation. The second deflectable beam 324 is configured to be deflected toward the central plane 334 during the mating operation. For example, in the illustrated orientation, the second deflectable beam 324 will be deflected upward by the flexible contact finger 254.
The second deflectable beam 324 includes a sloped surface 340 extending to a tip 342 of the second deflectable beam 324. The sloped surface 342 is angled toward the first deflectable beam 322. Optionally, the tip 342 may pass across the central plane 334. The sloped surface 340 may be slightly forward facing to provide a lead-in for mating with the flexible contact finger 254. The sloped surface 340 provides a lead-in to the wiping surface defined by the exterior surface 312.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
As used in the description, the phrase “in an exemplary embodiment” and the like means that the described embodiment is just one example. The phrase is not intended to limit the inventive subject matter to that embodiment. Other embodiments of the inventive subject matter may not include the recited feature or structure. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Number | Name | Date | Kind |
---|---|---|---|
3581272 | Yopp | May 1971 | A |
3588789 | Kailus | Jun 1971 | A |
4416504 | Sochor | Nov 1983 | A |
4825541 | Czeschka | May 1989 | A |
20070042649 | Russelburg | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20160056564 A1 | Feb 2016 | US |