1. Field of the Invention
The present invention relates to providing user control of inherent light bulb characteristics designed into them by their manufacturers. The characteristics controlled by the invention include: power consumption, energy efficiency, life span/burn time, light quality/whiteness, ambient lighting coloration, and light bulb turn-on speed.
2. Discussion of the Prior Art
Until now, all of these light bulb characteristics, designed into the light bulbs by their manufacturers, were preset and virtually unchangeable. For example, if a consumer buys a standard 120 VAC, 100 W incandescent light bulb, it is certain to use 100 W of power, last the manufacturer specified number of hours, output a specific number of lumens of light, have a specific energy efficiency rating, general color rendering index, and correlated color temperature. The light bulb can also be counted on to turn-on abruptly when the power is applied to it, to its detriment. With this embodiment of the present invention, all of these characteristics are now adjustable and settable by the user, simply by choosing the appropriate wattage ratings of the light bulbs installed into the device, which is plugged into the lamp fixture.
It is an objective of my invention to provide a small size and inexpensive means to effect user control of the illumination process.
It is another objective of my invention to convert the AC input voltage into a DC voltage distributed across plural illuminating resistive loads placed in series.
In one embodiment of the present invention, the user may choose to install into the device two 100 W incandescent light bulbs for an application requiring some energy savings, extended light bulb life and colorful light, for example in a ceiling or attic lamp fixture where changing the bulbs is difficult and is desired to do as infrequently as possible. This “Bulb Saver Mode” of operation provides all of these benefits, including greatly extended bulb operating life, many times its original rating, but with decreased energy efficiency.
In another embodiment of the present invention, the user may choose to install into the device one 40 W incandescent light bulb and one 100 W incandescent light bulb for an application requiring greatly improved energy efficiency, great energy savings, and very white light, for example in a table, reading light. This “Energy Efficiency Mode” of operation provides all of these benefits, including greatly improved energy efficiency, but with decreased light bulb life.
No matter what mode of operation is selected the device provides for a slower light bulb turn on speed. This feature serves to extend light bulb life expectancy by preventing or at least reducing a premature light bulb blowout. By slowing the light bulb turn-on speed, this extends the period of time it takes for the filaments to achieve full illumination. This extended turn-on time period serves to decrease thermal shock to the bulbs' filament, as well as reducing current surge through the filaments at startup, all to help prevent or minimize filament burn out during this initial startup period, when the filaments are most vulnerable to blowout.
Through the use of embodiment of the invention, the user is put in control of how their energy is used, money is spent, and illumination characteristics that matter most to them for a particular application can be achieved.
This embodiment illustrated in the figures is an electrical device used in standard household lighting fixtures that operate at 120 VAC and use standard incandescent or halogen light bulbs, such as those found in the United States and Canadian markets. The device could be easily resized for other alternating voltages such as used in different countries.
The device screws into the lighting fixture where the light bulb is normally installed. Into this device are screwed plural standard incandescent or halogen light bulbs that operate on AC voltage. Typically, the plural bulbs' wattage values are what determine the operational characteristics of the device and what benefits the user of the device will achieve.
Reference is now taken to the figures, wherein the schematic circuit of the embodiment illustrated in the figures is illustrated in its entirety, with all electrical elements for the conversion of AC to DC, safety, and power distribution across illuminated, resistive loads connected in series.
Turning to
The rectifier 18 is connected to a printed circuit board 20 and therethough is electrically connected to an electrolytic capacitor 22. The capacitor 22 is used for conversion to a DC voltage. A suitable electrolytic capacitor 22 is a large can aluminum electrolytic capacitor, part number SM2D122M-2540, from Delcon Industries Co., Ltd.RM115, 1/F, Lee Hang Industrial Building, No. 10 Cheung Yue Street, Kowloon, Hong Kong This particular capacitor provides a capacity of 120 μF, 200 Vdc working voltage and 250 Vdc surge voltage, a maximum amperage of 3.5 Arms at 120 Hz at up to 85 degrees C., and a maximum impedance of 0.166 ohms at 120 Hz at 20 degrees C.
The capacitor 22 is responsible for:
Connected to the capacitor 22 is a resistor 24 via a break-away circuit board 26. The responsibility and purpose of the resistor 24 is ensuring a safe and timely discharge of the capacitor 22, when the capacitor 22 is fully charged, after the AC voltage is removed from leads 10, 12, and 14, without interfering with the operation of the device. A suitable resistor 24 is 32 KΩ, single watt, carbon film resistor, part number CR1W32KJ, from the above identified Delcon Industries.
Leads 28 and 30 extend away from the circuit board 20 and connect to respective loads 32 and 34. Lead 36 connects the loads 32 and 34 in series. Because of this load connection configuration powered by the DC voltage applied across leads 28 and 30, the user can choose the loading ratio between loads 32 and 34. This is done by choosing the wattage of the plural (e.g. two)—light bulbs installed in the circuit at loads 32 and 34, noting that different wattage light bulbs have different resistance load values.
Energy efficiency is increased in Energy Saver Mode by applying an increased average voltage to one of the filaments. As this applied average voltage is increased the incandescence process in both incandescent and halogen light bulbs naturally becomes more efficient. Likewise, as this average voltage is decreased to the light bulb filaments, as in Bulb Saver Mode, the lifespan of the light bulbs is naturally extended. Without wishing to engage in theory, it is assumed that the relationship between the parameters used in the embodiment illustrated in the figures is well known in the art:
Loading Ratio=load 32/load 34 i)
load 32=((DC Voltage/(load 32+load 34))×load 32) ii)
load 34=((DC Voltage/(load 32+load 34))×load 34) iii)
Each light bulb generates an equal amount of warm colorful light, and has a greatly extended life span, but with decreased energy efficiency.
Each light bulb generates very different amounts of light, so much so that only load 34 (the 40 W light bulb) illuminates. Load 34 is generating high quality white light, with high energy efficiency, but with decreased light bulb life.
Experiments have been performed to test the viability of the embodiment illustrated in the figures and obtained the following results:
Furthermore, the following results were obtained from an experiment with Underwriters Laboratories Inc., of 333 Pfingsten Road, Northbrook, Ill. 60062-2096 USA. The results represent successful experimentation on the embodiment illustrated in the figures operating in Energy Efficiency Mode. Note, in the table, the device is identified as “UltraLight™ Lamp Adapter”.
In use, the device typically provides multiple benefits:
At the most basic level, the device transfers electrical power to the sockets of the unit where the incandescent or halogen light bulbs are screwed. The device first takes standard household AC power in at the plural contact base of the unit that is screwed into the lamp fixture (this type of base allows for proper connection to standard one or three level lamp fixtures.). Next, the device illustrated in
The following further summarizes the benefits of the embodiment illustrated in
Turning to
Disposed on the lower housing 42 is an upper housing 44, which includes left and right sockets 46 and 48. The sockets 46 and 48 are disposed in a “Y” configuration, though any angle can be used so long as the inserted bulbs are appropriately separated.
The upper housing 44 has a bottom section 50 which has a larger outer diameter than a top portion 52 of the lower housing 42. The “Y” configuration allows for swiveling of the upper housing 44, and light bulbs contained therein, around the lower housing 42. Leads 28 and 30 are curled to allow for nearly 360 degrees of rotation without breaking the wires, even after many thousands of repeated rotations. Nonetheless, a physical stop 53 on the right side, lower, plastic housing prevents the upper plastic assembly from rotating beyond the single, full turn. The effect of the swivel feature is to allow for proper alignment of the light bulbs relative to the lamp's harp, which holds the lampshade in place.
A groove 54 on the upper housing 44 and a mating boss 56 on the lower housing 42, as well as a second boss 58 on the upper housing 44 and a second mating groove (not shown) on the lower housing 42 prevent the upper housing 44 from slipping from the lower housing 42.
Disposed in the sockets 46 and 48 in the upper housing 44 are other standard elements for the assembly of the light bulb sockets 46 and 48. These include eyelets 60 and center springs 62. The eyelets 60 are designed to withstand a minimum of 60 lbs of tensile force. It is to be noted that the UL Security of Screwshell (Pull Test) from Underwriters Laboratories requires a design to withstand only 20 lbs of tensile force. Ring terminals, e.g., 64 are used to form electrical junctions.
Solder welds, hot melt adhesion, and ultrasonic bonding are the main assembly techniques used in the making of this product. The application of such techniques would be understood by one of ordinary skill in the art after reading the instant disclosure.
While the invention has been described with reference to the presently preferred embodiment, it should be easily apparent to one skilled in the art that modifications and changes in construction can be incorporated depending on specific use without departing from the true spirit of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4156891 | Roche | May 1979 | A |
4339690 | Regan et al. | Jul 1982 | A |
5130608 | Zahardis | Jul 1992 | A |
5303124 | Wrobel | Apr 1994 | A |
5343122 | Sugimori et al. | Aug 1994 | A |
5688042 | Madadi et al. | Nov 1997 | A |
5734229 | Bavaro et al. | Mar 1998 | A |
6356038 | Bishel | Mar 2002 | B2 |
6573665 | Cooper et al. | Jun 2003 | B2 |
6599000 | Nolan et al. | Jul 2003 | B2 |
6609804 | Nolan et al. | Aug 2003 | B2 |
6734641 | Shoji et al. | May 2004 | B2 |
6819061 | Danjo et al. | Nov 2004 | B2 |
6936968 | Cross et al. | Aug 2005 | B2 |
7190127 | Rudolph | Mar 2007 | B2 |
7868482 | Greene et al. | Jan 2011 | B2 |
20040156199 | Rivas et al. | Aug 2004 | A1 |
20050093475 | Kuennen et al. | May 2005 | A1 |
20050122723 | Frederick | Jun 2005 | A1 |
20050225257 | Green | Oct 2005 | A1 |
20060232220 | Melis | Oct 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100207541 A1 | Aug 2010 | US |