In fuel injection systems for direct-injection internal combustion engines, fuel injectors that contain one or more electrically triggerable valves are employed. For instance, an electrically triggerable magnet valve or piezoelectric valve may be provided for controlling a needle valve and thus for controlling the course of injection. Further valves may be used, for instance for a pressure boost. Separately testing the functionality of the various valves and the components connected to these valves or controlled by these valves, however, is often a challenge.
Since the electrically triggerable valve or valves are typically accommodated in the interior of an injector body, the production, testing and electrical contacting of these electrically triggerable valves as well as maintenance of the electrically triggerable valves often present considerable technical difficulties.
In many cases, on top of the injector body there is an electrical contact that can be connected to a corresponding control system and power supply system located outside the injector body. Via this contact (which may be either a multiple plug, or a plurality of individual plugs), all the electrically triggerable valves received in the interior of the injector body are as a rule triggered. In the interior of the injector body, this electrical contact must be connected to corresponding contacts of the electrically triggerable valve or valves of the injection system. This connection is typically done by means of flexible electrical cables and a simple soldering process.
This method for electrically contacting the electrically triggerable valves is associated with various disadvantages, however. For instance, the method is technically quite labor-intensive, since typically the cables must be initially soldered by hand against the corresponding electrical contacts. In practice, this method step requires great effort and is very time-consuming. Moreover, the connection between the electrically triggerable valves and the electrical contact on the injector body can be undone again only with difficulty. For removing or disassembling the injector body, soldered or welded connections must typically be disconnected again. Such a labor-intensive process makes it uneconomical to repair the injectors or replace individual parts of the injector body.
Moreover, in this method, testing the various functionalities of the fuel injectors sometimes prevents major problems. In many cases, if a malfunction occurs in testing in the installed state, the fuel injector must usually be disassembled again, which is labor-intensive. Once the repair or replacement of individual components (such as of an electrically triggerable valve) has been done and the parts have been installed again, the functionality must then be tested again. In many cases, this method is too labor-intensive and thus uneconomical.
According to the invention, a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine and a method for producing such a fuel injector are therefore proposed which avoid the described disadvantages of the prior art. A fundamental concept of the present invention is that an injector body of the fuel injector has at least two separate function units, which (for instance at least with regard to at least one functionality) are functional independently of one another and can be tested independently of one another. For instance, one function unit may have a control module for controlling a pressure boost of a fuel pressure, and another function unit may have a nozzle module for triggering an injection event by an injection valve member. The function units are reversibly connected or joined to one another via at least one nonpositive-engagement connecting element (such as a union nut) and at least one positioning pin. Instead of one or more positioning pins, according to the invention means that function the same way may also be employed, such as protrusions in the housing of one function unit that engage corresponding grooves in the other function unit and thus prevent relative rotation of the function units and make positioning the function units relative to one another easier.
The two function units each have at least one electrically triggerable valve (such as a magnet valve). Moreover, the fuel injector may have at least one electrical injector body contact, which is accessible from an outside of the injector body, and the second electrically triggerable valve has at least one valve contact, and the at least one electrical valve contact and the at least one electrical injector body contact are joined at least in part via at least one electrical solid conductor that is substantially dimensionally stable under its own weight. This electrical connection between valve contacts and the injector body contact can advantageously also include at least one electric plug contact, into which the at least one electrical solid conductor for instance is plugged.
In comparison to the prior art, the fuel injector of the invention makes a highly simplified production process possible. For instance, in particular, a first function unit can first be produced and tested, for instance with regard to the functionality of an electrically triggerable valve. Next, or parallel to this, a second function unit is produced and tested, for instance again with regard to the functionality of an electrically triggerable valve. Finally, the function units are reversibly joined to one another by means of the nonpositive-engagement connecting element, and an electrical connection between the at least one injector body contact and the at least one valve contact is made, for instance by means of plugging into an electric plug contact.
The separate testing of the individual function units enhances the process stability in the production of the fuel injectors considerably, and makes it possible to detect defects (such as electrical defects of the individual valves) early and eliminate them if applicable. The function units may thus also be produced separately and independently of one another. Simple removal and repair for maintenance purposes is possible. This lowers the overall costs of production and repair and enhances the reliability of the fuel injectors.
The invention is described in further detail below in terms of the exemplary embodiments shown in the drawings. Identical reference numerals designate components that are the same as one another or correspond to one another in their function.
Individually, the drawings show:
In
The modules 132, 134, 136 and 140 are grouped in this exemplary embodiment into two function units 148, 150: one control unit 148 including the control module 132 and the sealing plate 134, and one nozzle unit 150 including the line connection module 136, the pressure booster module 138, and the nozzle module 140. These two function units 148 and 150 are separated or disconnected from one another by the second butt joint 126 and are reversibly joined together by a union nut 152. The function units 148, 150 are furthermore joined together via the positioning pins 154 (in the sectional view of
The injector body 110 furthermore has two magnet valves 111, 112: a first magnet valve 111, disposed in the control module 132, for controlling the pressure boost in the pressure booster module 138, and a second magnet valve 112, disposed in the nozzle module 140, for controlling the actual injection event via the injection valve member 146.
Because two function units 148, 150 are separable or disconnectable along the second butt joint 126, the (“dry”) control module 132 and the (“wet”) part of the injector body 110 located below the first butt joint 124 can be designed, produced and tested separately, and then put together. Moreover, because of this separability, individual components of the injector body 110 can easily be replaced for maintenance purposes, for instance, which is in accordance with the “system repair concept” (SRC).
The magnet valve 112 in the nozzle module 140 is electrically triggerable via two electrical valve contacts 114. The injector body 110, on its upper end, has an electrical injector body contact 116 that is accessible from above. In the modular construction of the injector body 110 as shown, the capability of breaking down the injector body 110 and of simple modular assembly is achieved by providing that the valve contacts 114 be connected electrically to the injector body contact 116 in such a way that simple assembly and capability of breaking down the injector body continue to be assured.
In this exemplary embodiment, for connecting the two electrical valve contacts 114 to the injector body contact 116, two conductor conduits 120 are provided, which extend through the modules 138, 136 and 134. The conductor conduits 120 are formed by bores in the pressure booster module 138, in the line connection module 136, and in the sealing plate 134. Once the injector body 110 has been put together, these bores are each flush at the butt joints 128 and 126, so that the result is a single, continuous conductor conduit 120.
The individual bores of the conductor conduit 120, in this exemplary embodiment, in the various modules 138, 136, 134 each have a rectilinear course. With the provisions of the invention, a curved course of the bores can also be achieved. However, the bores in the individual bores 138, 136, 134 do have a different inclination relative to an injector axis 142. While the conductor conduit 120 in the pressure booster module 138 has an inclination of 1° to the injector axis 142, the inclination in the line connection module 136, in this exemplary embodiment, is 2.2°. These different angles of inclination relative to the injector axis 142 are due to the fact that the injector body 110 tapers in its cross section toward the bottom, that is, from the control module 132 to the nozzle module 140.
The connection between the two electrical valve contacts 114 of the magnet valve 112 and the injector body contact 116 is effected, in this exemplary embodiment, in part via two solid conductors 118. The solid conductors 118 extend through the two conductor conduits 120 and connect the valve contacts 114 to electric plug contacts 122, which in turn are connected to the injector body contact 116 via an electrical connection 144 (for instance, two cables each soldered at one end to an electric plug contact 122 and at another end to the injector body contact 116). The solid conductors 118 are thus fixedly or detachably connected electrically to the valve contacts 114 of the magnet valve 112.
The connection of the solid conductors 118 to the plug contacts 122 is done reversibly, so that this connection can be made upon assembly of the injector body 110, or in other words when the control unit 148 and nozzle unit 150 are put together, by simply pressing the solid conductors 118 into the plug contacts 122. Conversely, in the event of maintenance, the solid conductors 118 can be easily removed from the plug contacts 122 again, and thus the injector body 110 can be broken down into the two function Units 148, 150 again without having to unsolder electrical connections.
The solid conductors 118 are selected to be rigid enough that on the one hand they do not substantially change their shape under their own weight, and can thus be easily threaded through the conductor conduits 120 with their different inclinations to the injector axis 142 and plugged into the plug contacts 122. The solid conductors should have a certain plasticity, so that no mechanical stresses arise either at the transition between portions of the conductor conduits 120 that have different angles of inclination. The term “solid conductor” does not necessarily narrow the choice of materials to solid materials; on the contrary, hollow conductors (tubes) may for instance also be used as solid conductors 118, as long as they have sufficient mechanical rigidity.
In the exemplary embodiment shown in
In
In
It can also be seen in
In
In
In
In
In a first method step 410, a first function unit 148 of a fuel injector is produced; it has at least one injector body contact 116 and at least one first electrically triggerable valve 111. In method step 412, a first functionality of the first function unit 148, in particular an electrical function of the first electrically triggerable valve 111, is tested.
Independently of method steps 410 and 412, in method step 414 a second function unit 150 is produced, which has at least one second electrically triggerable valve 112 with at least one electrical valve contact 114. In method step 416, a second functionality of this second function unit 150, in particular an electrical function of the second electrically triggerable valve 112, is tested. In the (optional) method step 418, the two function units 148, 150 are then positioned relative to one another by means of at least one positioning pin 154. Next, in method step 420, the first function unit 148 and the second function unit 150 are reversibly connected to one another at a butt joint 126 by means of at least one nonpositive-engagement connecting element 152, whereupon an electrical connection is made between the at least one injector body contact 116 and the at least one valve contact 114.
Number | Date | Country | Kind |
---|---|---|---|
102005004327.5 | Jan 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/56850 | 12/16/2005 | WO | 00 | 6/22/2007 |