The invention generally relates to electrical distribution center that may be configured for use in a vehicle, and more particularly relates to an electrical distribution center having a plurality of slides and a single lever configured to secure a connector body to a base.
Electrical connector assemblies, such as a simple electrical connector or a multi-functional electrical distribution center, are widely used. The electrical distribution centers are generally a central junction box or block system designed as a stand-alone assembly. The electrical connectors typically electrically connect at least two wire harnesses together and thus house a plurality of connected male and female terminals. The distribution centers perform a similar function as the electrical connectors, but may also house various fuses, relays and other electrical devices in a central location. Electrical distribution centers not only reduce cost by consolidating various functions and/or electrical connections into one block, but the centers also reduce the number of cut and spliced leads which increases reliability. Such electrical distribution centers include provisions for electrically connecting a power source and electrical devices housed in the junction block to electrical wiring harness connectors for supplying power and control signals to various electrical systems.
In many electrical distribution center applications, such as that used in the engine compartment of a vehicle, disclosed in U.S. Pat. No. 5,715,135, to Brussalis, the entire disclosure of which is hereby incorporated by reference, devices such as fuses and relays of the electrical distribution centers are accessible from the top with bases protruding from a bottom side. Unfortunately, due to this orientation, access to the connectors is often difficult for mating (connecting) and unmating (disconnecting). In many cases, the electrical distribution center has to be flipped upside down, the connectors assembled, and the entire assembly with protruding wire harnesses flipped again into a final position.
Known electrical distribution centers, such as that disclosed in Brussalis, typically mount the fuses, relays and electrical devices to a top side of an upper electrical distribution panel. A plurality of double ended terminals is engaged to and extends through a tray located below the panel. A top end of each terminal projects through a respective slot of the upper panel for engagement to the fuse, relay or electrical device. A bottom end of the male terminal projects downward through respective slots of yet a second lower tray for electrical engagement to terminals locked into at least one electrical connector body which is engaged to a lower support structure of the distribution center. Unfortunately, the panel, trays and connector bodies are all held together by a plurality of threaded fasteners which is costly to manufacture and requires special tools for assembly and maintenance purposes.
Known improvements to this conventional distribution assembly are described in U.S. Pat. No. 5,788,529 to Borzi issued 4 Aug. 1988, U.S. Pat. No. 6,739,889, to Daggett, issued 25 May 2004, and U.S. Pat. No. 7,094,081 to Senk, et al. issued 22 Aug. 2006. In Borzi and Daggett, the distribution assembly is not flipped when assembling internal connectors and does not require the use of threaded fasteners or bolts thus does not need special assembly tools to secure various connector bodies of the distribution assembly together. Instead, an engagement mechanism or leverage device having four independent cam levers applies a normal force when the cam levers are rotated to connect the distribution assembly. Simultaneous rotation of the four levers also produces a moment which is countered by various structural and alignment features incorporated into this known distribution assembly to maintain alignment of the terminals during connecting. In Senk, the engagement mechanism has two independent cam levers that apply a normal force when rotated to connect the distribution assembly.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
The inventors recognized the problems created by the prior art electrical distribution centers of requiring packaging space to be allocated on both ends of the electrical distribution center for the levers. The inventors also recognized that separate levers on each end of the electrical distribution center restricts where the electrical distribution center can be mounted in the vehicle while meeting ergonomic requirements to operate the levers. The inventors further recognized the potential for misalignment between the connectors or the connector bodies of the electrical distribution center caused when the levers are engaged separately from each other.
Described herein are solutions for an electrical distribution center having a single lever configured to apply a normal force when rotated to connect the electrical distribution center. The single lever is located centrally in the electrical distribution center. The single lever does not require packaging space to be allocated on both ends to accommodate movement of the lever. Because the electrical distribution center has a single lever, the likelihood of misalignment caused by engaging a plurality of levers separately is reduced. The single lever may also be mounted to the electrical distribution center either laterally or longitudinally, providing greater flexibility for mounting locations in the vehicle that can meet ergonomic requirements.
In accordance with one embodiment of this invention, an electrical distribution center configured for use in a motor vehicle is provided. The electrical distribution center includes a connector body, a base, a first and second slide, and a slide lever. The connector body has a first side wall spaced apart from a second side wall and an electrically conductive first terminal that is rigidly engaged to the connector body. The base has an electrically conductive second terminal rigidly engaged to the base. The second terminal is constructed and arranged to electrically connect with the first terminal. The base defines a first stud and a second stud that are constructed and arranged to mechanically connect with the connector body. The base further includes an electrical connector that is configured be attached to a mating connector of a wire harness. The first slide is slideably supported within a first channel that is defined by the first side wall. The first slide is spaced inwardly from the first side wall and defines a first dog-leg shaped slot configured to engage the first stud. The a second slide slideably supported within a second channel defined by the second side wall and spaced inwardly from the second side wall and defining a second dog-leg shaped slot configured to engage the second stud. The slide lever is pivotally connected to the first and second side walls of the connector body, the first slide, and the second slide. The slide lever has a first arm connected by a handle to a second arm that is spaced apart from the first arm. The first arm extends between the first slide and the first side wall and the second arm extending between the second slide and the second side wall. The slide lever is operable to simultaneously slideably move the first and second dog-leg shaped slots with respect to the first and second stud, thereby connecting the connector body with the base.
The base may include a plurality of first studs and a plurality of second studs. The first slide may include a plurality of first slots and the second slide may include a plurality of second slots.
The connector body may define a rectangular shape that has a major axis and a minor axis. The first and second slides may be disposed substantially parallel to the major axis or the minor axis.
Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of the preferred embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
The electrical distribution center described herein utilizes a single lever to make the connection in the vehicle from the wire harness electrical connectors to the electrical distribution center. It has a single slide lever that drives a pair of slides which engage studs on the base thereby pulling the electrical center downward onto the electrical connectors. This configuration allows the electrical center to be mounted in one of multiple orientations while still maintaining ergonomic requirements for operating the lever.
Referring to the various figures wherein like numerals refer to like elements throughout the several views, the exploded assembly view of
The base 12 includes an electrical connector (not shown) that is configured be attached to a mating connector (not shown) of a wire harness (not shown). The electrical connector also includes electrical terminals (not shown) that are configured to engage electrical terminals (not shown) included in the connector body 14. The base 12 defines an unthreaded first stud 22 and a corresponding unthreaded second stud on the opposite side of the base 12 (not shown due to the perspective of the drawing). Each stud 22 may be characterized as a boss or cylindrical protuberance extending from the sides of the base 12. The base 12 may define a plurality of first studs 22 and a plurality of second studs. The connector body 14 is configured to connect with the base 12, thus establishing electrical connection between the electrical terminals in the connector body 14 and the electrical terminals in the base 12.
The connector body 14 includes a first side wall 24 spaced apart from the connector body 14 and defining a first channel 26 between the connector body 14 and the first side wall 24. A first slide 28 is inserted into the first channel 26 and is slidably supported in the first channel 26 and is spaced inwardly from the first side wall 24. The connector body 14 also includes a second slide 30 that is similarly slidably supported in a second channel 32 defined between a second side wall 34 and the connector body 14 on the opposite side of the connector body 14 from the first side wall 24. The second slide 30 is spaced inwardly from the second side wall 34. The first and second channels 26, 32 are molded as part of the connector body 14. The first and second channels 26, 32 support the first and second slides 28, 30 respectively, but in a position spaced away from the first and second side walls 24, 34 respectively of the connector body 14.
The first slide 28 includes a first dog-legged shaped connecting slot 36 that is adapted to receive the first stud 22 of the base 12. The second slide 30 also includes a second dog-legged shaped connecting slot 38 that is adapted to receive the second stud of the base 12. A slide lever 40 is pivotally interconnected with the connector body 14 and each of the first and second slides 28, 30, and is operable to move the first and second slides 28, 30, with respect to the connector body 14 to facilitate connecting the connector body 14 with the base 12.
The slide lever 40 has a first arm 42 and a spaced apart second arm 44 attached to a central handle portion 46 that is configured to be gripped by an operator. The free ends 48 of the first and second arm 42, 44, that is the ends not attached to the central handle portion 46, define a forked shape having an arm slot 50 between the tines of the fork shape. The first and second slides 28, 30 are disposed in the arm slots 50 of the first and second arms 42, 44 respectively. The free ends 48 of the first arm 42 and the second arm 44 each defines a pair of pivot pins 52 that pivotally engage an opening 54 in the first and second side walls 24, 34 and on opening in the side of the connector body (not shown). The pivot pins 52 and the openings in the connector body 14 allow the slide lever 40 to pivot in relation to the connector body 14. Each pivot pin 52 may be substantially equidistant from each end of each side wall 24, 34. As used herein, substantially equidistant means ±10 millimeters of absolutely equidistant.
The second slide 30, second stud, and second arm 44 contain all of the features of the first slide 28, first stud 22, and first arm 42 illustrated in
The first and second arms 42, 44 each terminate in a tip segment. The first and second arms 42, 44 each include an abutment disposed adjacent the tip segment, wherein the abutment extends outwardly from the tip segment relative to an imaginary axis running the length of each arm. In other words, the tip segment is narrower than the portion of the arm having the abutment.
Each channel defines a support slot that is sized to provide clearance to the tip segment, but not the abutment, so that the tip segment passes through the support slot until the abutment abuts the channel. The support slot may be viewed as an interruption in the channel.
The connector body 14 defines a deflection slot adjacent the support slot. The deflection slot is contiguous with the support slot. The purpose of the deflection slot is to allow the side walls of the connector body 14 to deflect outwardly when the slide lever 40 is connected to the first and second slides 28, 30 during assembly.
The electrical distribution center 10 may define a rectangular shape having a major axis and a minor axis. The first and second slides 28, 30 may be disposed substantially parallel to the major axis X (longitudinally) or alternatively may be disposed substantially parallel to the minor axis Y (laterally). As used herein, substantially parallel is ±15° of absolutely parallel. Thus, being able to mount the slides laterally or longitudinally may provide greater flexibility for finding mounting locations in the vehicle for the electrical distribution center 10 that can meet ergonomic requirements for an operator operating the slide lever 40.
The component pieces of the electrical distribution center 10 including the connector body 14, base 12, first and second slides 28, 30, and slide lever 40 are made from a suitable injection molded plastic, such as polyamide (PA, NYLON), polybutylene terephthalate (PBT), or polypropylene (PP).
Accordingly, an electrical distribution center 10 is provided. The connector body 14 may be attached to the base 12 of the electrical distribution center 10 by operating a single slide lever 40. The single slide lever 40 does not require packaging space to be allocated on both ends of the electrical distribution center 10 to accommodate movement of the slide lever 40. Because the electrical distribution center 10 has a single slide lever 40, the likelihood of misalignment caused by engaging a plurality of levers separately is reduced. The single slide lever 40 may also be mounted to the electrical distribution center 10 either laterally or longitudinally, providing greater flexibility for mounting locations in the vehicle that can meet ergonomic requirements.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. Moreover, the use of the terms first, second, etc. does not denote any order of importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/58185 | 9/5/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61702334 | Sep 2012 | US |