The present invention relates generally to electrical equipment and, more particularly, to cooling systems for an electrical component of electrical equipment.
Switchgear assemblies and switchboards and panel boards are general terms which cover electrical equipment such as fuses and circuit breakers, along with associated control, instrumentation and metering devices. Such assemblies typically include associated conductors (for example, busbars), interconnections and supporting structures used for the distribution of electrical power. Each component in these assemblies is generally required to operate within predetermined parameter ranges associated with temperatures. For example, an upper temperature rise limit in electrical cabinets is defined. The operating temperature of electrical cabinets is dependent on, among other factors, current flowing through the plurality of copper or aluminum conductors that are physically and electrically isolated from each other. As current is transmitted through the conductors, heat is generated by mechanisms that include I2R losses. The generated heat can cause the temperature of the cabinets to increase beyond the permissible limits. The increase in temperature can also lead to deterioration of components like insulators. The deterioration of components increases operational costs of the equipment by adding component replacement costs. Further, deterioration of insulation can also lead to an increase in arcing in the equipment and thus increase the risk of equipment failure.
Multiple cooling techniques have been utilized to reduce the temperature of electrical cabinets. Some examples of existing cooling techniques include, but are not limited to, addition of cooling agents such as fans, heat pipes, refrigeration cycles, and pumped liquid loops. These techniques include addition of the cooling agents to the cabinet and placing them in close proximity to the electrical components that may heat. However, addition of these components may lead to reliability issues with respect to the equipment. Further, some cooling agents, such as fans and pumped liquid loops, require additional power to be operated. This adds to the power requirements of the electrical equipment and reduces its overall power efficiency. Moreover, cooling agents may also include electrically conducting material that is placed in close proximity to electrical components thereby increasing chances of arcing and system failures.
Hence, there is a need for electrical equipment with safe as well as effective cooling options.
According to one embodiment, electrical equipment is provided. The electrical equipment includes a cabinet comprising a plurality of walls. The cabinet is disposed around a plurality of electric components such as conductors. Further, the electrical equipment also includes at least one barrier. The barrier is disposed in the cabinet and spaced apart from the conductor by a spacing distance to define a channel within the cabinet for air to flow between the barrier and the conductor. The barrier is placed such that a portion of the barrier is coupled to one of the plurality of walls of the electric cabinets.
According to another embodiment, a method for manufacturing electrical equipment. The method includes enclosing a plurality of electrical components of the electrical equipment in a cabinet comprising a plurality of walls. The plurality of electrical components enclosed in the cabinet includes a conductor. Further, the method also includes fixing at least one barrier in the cabinet. The barrier is placed such that the at least one barrier and the conductor are spaced apart by a spacing distance to define a channel within the cabinet for air to flow between the at least one barrier and the conductor.
Other features and advantages of the present disclosure will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of certain aspects of the disclosure.
Reference will be made below in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals used throughout the drawings refer to the same or like parts.
Embodiments of the present invention provide for electrical equipment and a method for manufacturing electrical equipment. Electrical equipment, such as circuit breakers and switch gears include multiple current carrying electrical components that are disposed in the equipment for specific functions. Examples of these current carrying components include, but are not limited to, panel boards, fuses, reclosers, conductors such as busbars, and the like. Some components are designated to carry current from one point in the equipment to another. Carrying current may lead to generation of heat in these components. The generated heat in these conductors may lead to deterioration of insulators that are located near the conductors. Embodiments described in the forthcoming paragraphs include electrical equipment that is designed to handle increased temperatures in a cabinet and also a method for manufacturing the electrical equipment. The cabinet is designed to be placed around electrical components in the electrical equipment. In some cases, electrical components in the equipment may be arranged in smaller groups and multiple cabinets may be placed around the smaller groups of electrical components. Further, the electrical equipment includes a barrier that is placed in the cabinet and spaced apart from the electrical component(s). The barrier is placed such that a channel is defined within the cabinet for air to flow between the barrier and the electrical component(s). Further, one end of the barrier is coupled to one of the walls of the cabinet. The barrier used to create the channel may be made from electrically insulating material. When the barrier is placed, air present around the electrical component(s) in the cabinet is directed through the channel. As the air passes through the channel it comes in contact with the electrical component(s). Due to a difference in temperature of the air and the electrical component(s), the temperature of the electrical component(s) is reduced. The air, which is hot after contact with the electrical component(s), may escape through an opening defined in the channel. Due to sudden expansion of the volume available for air after exiting the channel, the hot air also cools and can be reutilized to cool the electrical component(s). The electrical equipment along with one or more barriers is explained in greater detail with the help of the accompanying figures.
One of the walls of the cabinet 102 includes a handle or a knob, for example handle 136, to open the cabinet 102 to provide access to the component(s) 110. Further, the cabinet 102 may be made from any material capable of handling high temperatures and different environmental conditions.
The conductors 124, 126, 128, 130, 132, and 134 are made from conducting material such as aluminum or copper. During operation, the conductors 124, 126, 128, 130, 132, and 134 generate heat. The heat generated by the conductors 124, 126, 128, 130, 132, and 134 may cause other components of the equipment 100 to heat.
In accordance with an embodiment of the invention, in order to dissipate heat, one or more barriers, such as the barrier 204, is placed opposite at least one of the conductors 124, 126, 128, 130, 132, and 134. In the illustrated embodiment, the barrier 204 may be placed opposite multiple conductors (for example, conductors 124, 126, and 128) to reduce the number of barriers required to dissipate heat from each conductor in the equipment 200. However, any number of barriers may be employed. The barrier 204 and the conductors are spaced apart from each other by a spacing distance (B) 212. The spacing distance 212 may be a length of a line drawn from a point on the barrier 204 towards one of the conductors 124, 126, and 128 and that is perpendicular to the surface of the barrier 204. Further, the barrier 204 is coupled to at least one wall of the cabinet 202 to define a channel 214 between the barrier 204 and the conductors 124, 126, and 128. For example, as shown in
The channel 214 between the barrier 204 and the conductors 124, 126, and 128 has at least one opening 216 to allow air to enter the channel 214 and another opening 218 to allow air to exit the channel 214. The channel 214 allows air from the vacant spaces in the cabinet 202 to be directed towards the conductors 124, 126, and 128 through the opening 216. The air, as it moves along a surface of the conductors 124, 126, and 128 that is facing the barrier 204, cools the conductors 124, 126, and 128 and exits the channel 214 from the opening 218. Similarly, air may enter the channel 214 from the opening 218 and exit the channel 214 from the opening 216.
The barrier 204, according to certain embodiments, is a sheet of electrically insulating material. Further, the barrier 204 may also include thermally insulating material. Examples of materials that can be used for the barrier 204 include, but are not limited to, Polytetrafluoroethylene (PTFE), Acrylonitrile Butadiene Styrene (ABS), Fiber-Reinforced Plastic (FRP), glass, and the like. The barrier 204 may be of different shapes and sizes. The shape of the barrier is selected such that the conductors 124, 126, and 128 are substantially covered while allowing for air to pass through the channel 214. Examples of shapes of the barrier 204 include, but are not limited to, rectangular, square, trapezoidal, circular, arcuate, tubular, or any other shape to allow the barrier 204 to be placed in the cabinet 202.
In one embodiment, the barrier 204 may be placed opposite the conductors 124, 126, and 128 such that they are parallel to each other. In other embodiments, as shown in
The barrier 204 is connected to one of the walls, such as the wall 206, of the cabinet 202 by an extended portion 222 of the barrier 204 using any known fastening mechanisms such as welding, industrial adhesives, rivets, screws, bolts, and combinations of bolts and nuts. The barrier 204 may be fabricated such that the extended portion 222 is substantially perpendicular to the remainder of the barrier 204. In other embodiments, the extended portion 222 may be separately fabricated and attached to the barrier 204 at a first end and to one of the walls of the cabinet at a second end.
The efficiency of heat dissipation of the channel 214 is dependent on a ratio between the spacing distance (B) 212 and a measurement of a dimension 220 (L) of the barrier 204. The dimension L of the barrier 204 used for calculation of this ratio is the longitudinal dimension of the side of the barrier 204 that is facing the conductors 124, 126, and 128. For example, when the barrier 204 is rectangular in shape such as in
With continued reference to
Multiple configurations of the barrier 204 can be used to place the barrier 204 opposite one or more conductors. For example, one configuration may include creating multiple openings in the barrier 204 to allow more air to pass through the channel 214 and also cool the hot air moving towards the opening 218 with jets of cooler air from the ambient atmosphere. Examples of such a configuration as well as other configurations are illustrated in
A spacing distance 502 between a central region 504 of the barrier 204 and the conductor 124 is at a minimum in comparison with the spacing distance 506 and 508 between the ends 510 and 512 of the barrier 204 and the conductor 124. The barrier 204 may be fabricated such that the sections connecting the ends 510 and 512 and the central region 504 diverge away from the central region 504. As illustrated in
The configurations illustrated in
In an embodiment, the barrier 204 and the side barriers 602, 604, 606, and 608 may be fabricated as a single unit. The single unit may comprise a first surface that may act as the barrier 204 and surfaces perpendicular to the first surface that may act as the side barriers 602, 604, 606, and 608. Further, the first surface of the single unit that acts as the barrier 204 may be arcuate in shape and may define compartments 616, 618, and 620 that are tubular in shape.
In one embodiment, the compartments 616, 618, and 620 may have even geometries when the barrier 204 has a flat surface and is placed in parallel with respect to the conductors 124, 126, and 128. While the illustrated embodiment shows that the barrier 204 has a flat surface, the shape of the barrier 204 may be changed to provide multiple variations in the shape of the compartments 616, 618, and 620.
In certain embodiments, as illustrated in
Air enters each compartment 616, 618, and 620 from one end of the compartments and exits at another. For example, air may enter the compartments 616, 618, and 620 from the end 622. While passing through the channel between the barrier 204 and the conductors 124, 126, and 128 in each compartment 616, 618, and 620, air cools the conductors 124, 126, and 128. The hot air exits each compartment 616, 618, and 620 from another open end in each compartment. For example, the hot air may exit the compartments 616, 618, and 620 from the end 624.
The side barriers 602, 604, 606, and 608 may be made from electrically insulating material. In some embodiments, the side barriers 602, 604, 606, and 608 may also be fabricated from thermally insulating material. Materials that can be used to fabricate the side barriers 602, 604, 606, and 608 may include, but are not limited to, Polytetrafluoroethylene (PTFE), Acrylonitrile Butadiene Styrene (ABS), Fiber-Reinforced Plastic (FRP), glass, and the like.
As shown in
The sections 702 and 706 may be coupled using known fixing mechanisms to define the side barrier 604. Similarly, the sections 704 and 708 may be coupled using known fixing mechanisms to define the side barrier 606. In other embodiments, the side barriers 604 and 606 may be fabricated to include sections 702 and 704 that are parallel to each other and sections 706 and 708 that diverge from each other.
Further, the method includes a step 804 of fixing at least one barrier (for example: barrier 204) to at least one of the walls of the cabinet 102. The barrier 204 is fixed in the cabinet 102 such that the barrier 204 is facing at least one of the conductors 124, 126, and 128. Further, the barrier 204 and at least one of the conductors 124, 126, and 128 are spaced apart from each other by a spacing distance to define a channel (for example, channel 214) between the barrier 204 and the conductors 124, 126, and 128. The channel 214 allows ambient air to flow between the barrier 204 and the conductors 124, 126, and 128 thereby cooling the conductors 124, 126, and 128.
The barrier 204 and the conductors 124, 126, and 128, in one embodiment, may be placed parallel to each other such that the spacing distance between the barrier 204 and the conductors 124, 126, and 128 is constant. In another embodiment, the spacing distance between barrier 204 and the conductors 124, 126, and 128 may vary along a longitudinal dimension of the barrier 204. Further, the method may also include defining perforations in the barrier 204 to allow jets of cooler air to enter the channel 214 and cause faster cooling of the conductors 124, 126, and 128.
Further, the method of manufacturing the equipment may also include a step of fixing a plurality of side barriers (for example: side barriers 602, 604, 606, and 608) in the cabinet 102. The side barriers 602, 604, 606, and 608 are coupled to a supporting wall on one end and to the barrier 204 on another end to define compartments for each conductor 124, 126, and 128. The compartments may electrically isolate the conductors 124, 126, and 128 from each other. In an embodiment, the side barriers 602, 604, 606, and 608 may be parallel to each other. In another embodiment, the side barriers 602, 604, 606, and 608 may converge towards or diverge away from each other. In an embodiment, a measurement of a longitudinal dimension of the side barriers 602, 604, 606, and 608 may be equal to the measurement of the longitudinal dimension of the barrier 204. In another embodiment, the side barriers 602, 604, 606, and 608 may be smaller than the barrier 204.
When the ratio T* is less than 1 for a particular B/L value it implies that the barrier 204 causes greater reduction in temperature of the conductors 124, 126, and 128 in comparison with temperature reduction when no barrier is placed in the cabinet 102. On the other hand, when the ratio T* is greater than 1 the barrier 204 has been placed such that it does not allow ambient air to reach the conductors 124, 126, and 128 thereby leading to slower cooling. The ratio T* is, thus, a representation of the effectiveness of the placement of the barrier 204 of a particular dimension (L) placed at a particular spacing distance (B) in maintaining the temperatures of the conductors 124, 126, and 128.
In the representation 900, plot 906 represents T* values for the dimension 220 of the barrier 204 equal to 20 cm. On plot 906, T* is equal to ˜1 for B/L ratio of ˜0.05. Further, T* is equal to ˜0.95 for a B/L ratio of ˜0.40. From the plot 906, it can be observed that the values of T* increase beyond B/L values of ˜0.40. Similarly, plot 908 represents T* values for the dimension 220 of the barrier 204 equal to 100 cm. On plot 908, T* is equal to ˜1 for a B/L ratio of ˜0.05 and T* is ˜0.90 for a B/L ratio of ˜0.40. Plot 910, represents T* values for dimension 220 of the barrier 204 equal to 200 cm. T* value on the plot 910 for a B/L ratio of ˜0.05 is equal to ˜0.875 and is equal to ˜0.89 for a B/L ratio of ˜0.40.
Various embodiments described above thus provide for electrical equipment and a method for manufacturing the electrical equipment. The above-described embodiments of the equipment and method provide for an inexpensive way of cooling conductors in the equipment. The cooling efficiency of the equipment allows for a reduction in the size of conductors installed in the equipment. Further, the elimination of additional cooling components to cool the conductors reduces the size of the cabinet, thereby making the equipment compact and easy to handle. Some embodiments also electrically isolate conductors and reduce the possibility of arcing in the equipment.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of ordinary skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” etc. are used merely as labels, and are not intended to impose numerical or positional requirements on their objects.
This written description uses examples to disclose several embodiments of the invention, including the best mode, and also to enable any person of ordinary skill in the art to practice the embodiments of invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
Since certain changes may be made in the above-described electrical equipment and method of manufacturing, without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
Number | Date | Country | Kind |
---|---|---|---|
3920/CHE/2014 | Aug 2014 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
5101080 | Ferenc | Mar 1992 | A |
5467250 | Howard | Nov 1995 | A |
5598322 | Von Arx | Jan 1997 | A |
5657641 | Cunningham | Aug 1997 | A |
6018455 | Wilkie et al. | Jan 2000 | A |
6082441 | Boehmer et al. | Jul 2000 | A |
6433271 | Arnborg | Aug 2002 | B1 |
6643123 | Hartel et al. | Nov 2003 | B2 |
7095606 | Mahn et al. | Aug 2006 | B2 |
7199318 | Buxton et al. | Apr 2007 | B2 |
7329813 | Josten et al. | Feb 2008 | B2 |
7586058 | Kozar et al. | Sep 2009 | B2 |
7637118 | Nicolai et al. | Dec 2009 | B2 |
7798892 | Aiello et al. | Sep 2010 | B2 |
7814760 | Immel et al. | Oct 2010 | B2 |
7821774 | Josten et al. | Oct 2010 | B2 |
7974078 | Coomer et al. | Jul 2011 | B2 |
8081464 | Mauroux et al. | Dec 2011 | B2 |
8229289 | Schneider et al. | Jul 2012 | B2 |
8243453 | Van et al. | Aug 2012 | B2 |
8437118 | Kasza et al. | May 2013 | B2 |
8481881 | Saxl et al. | Jul 2013 | B2 |
20030168949 | Hales | Sep 2003 | A1 |
20050231915 | Keenan | Oct 2005 | A1 |
20060120027 | Josten | Jun 2006 | A1 |
20070165375 | Nicolai et al. | Jul 2007 | A1 |
20090212022 | Josten et al. | Aug 2009 | A1 |
20100226073 | Nicolai et al. | Sep 2010 | A1 |
20100309630 | Jones et al. | Dec 2010 | A1 |
20120297798 | Kaufmann et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
202308972 | Jul 2012 | CN |
29720765 | Jan 1998 | DE |
1116309 | Jul 2001 | EP |
1667179 | Jun 2006 | EP |
1667180 | Jun 2006 | EP |
2085238 | Apr 1982 | GB |
Entry |
---|
John, “Estimating Busbar Temperatures”, Industry Applications, IEEE Transactions on (vol. 26 , Issue: 5), pp. 926-934, Oct. 1990. |
Schmidt et al, “Modelling of the Quench Process for the Optimisation of the Design and Protection of Superconducting Busbars for the Lhc”, European Organization for Nuclear Research European Laboratory for Particle Physics, Eighteenth International Cryogenic Engineering Conference (ICEC 18), pp. 1-4, Feb. 2000. |
European Search Report and Opinion issued in connection with corresponding EP Application No. 15179574.7 dated Dec. 11, 2015. |
Number | Date | Country | |
---|---|---|---|
20160044823 A1 | Feb 2016 | US |