Electrical feedthrough system and methods of use thereof

Information

  • Patent Grant
  • 11828126
  • Patent Number
    11,828,126
  • Date Filed
    Wednesday, February 19, 2020
    4 years ago
  • Date Issued
    Tuesday, November 28, 2023
    5 months ago
Abstract
An electrical feedthrough assembly has a lower assembly having a first end and a second end. The lower assembly includes an outer body with a lower housing and an upper housing disposed within a bore of the outer body and a first conductor extending from the lower housing to the upper housing. Additionally, the lower housing extends axial outward from the outer body to form the first end and the upper housing extends axial outward from the outer body to form the second end. Further, the electrical feedthrough assembly has an upper assembly having body extending from a first end to a second end. The second body includes a pin end at the first end and the pin end is inserted into an opening of the second end of the lower assembly. A second conductor is disposed within the body. A chamber within the body holds the first conductor.
Description
FIELD OF THE DISCLOSURE

Embodiments disclosed herein relate generally to subsea oil and gas operations equipment. More specifically, embodiments disclosed herein relate to systems and methods of use for an electrical feedthrough to provide power to subsea equipment.


BACKGROUND

In oil and gas, subsea operations may be performed in waters offshore at great depths. In order to recover hydrocarbons from a well, any number of electrical systems may be deployed on the seabed to perform subsea operations. Many of these electrical systems need high-reliability power grids and power control units located on the seabed, offshore rig, and/or buoyant devices to power various devices. Power systems play a major role in providing the required and reliable power to the various electrical systems. But, there are many challenges for deploying power components under the seabed such as the requirements of power system components operating in subsea environment, use of electronics for efficient transmission of power from the offshore platform or from the shore to the subsea electrical loads, variable speed drive systems, and research areas related to power electronics for subsea electrical systems.


In conventional methods, power is provided from external sources to the subsea devices via cable conductors to submerged process control equipment, pumps and compressors, transformers, motors, and other electrically operated equipment. As these components are disposed subsea and are typically enclosed and protected by water-proof pressure vessels, power is provided by means of a cable termination and connector, which may be an electrical penetrator, designed to penetrate and provide power through a subsea tree.


As described above, the installation and operation of subsea electrical systems have various challenges. Pressure increases about 10 bar (about 145 PSI) for every 100 m depth in the ocean, and thus, for electrical systems needing to be located at a water depth of about 3000 m, the electrical systems encounters about 300 bar pressure. At these depths, all the electrical components have to be designed and qualified to withstand high pressures. Additionally, sea water is a conductor and corrosive, hence proper isolation between the electrical equipment and the sea water needs to be provided. As the equipment is located at depths of up to 3,000 m, in the event of fault, maintenance will be a challenge and will not be possible without bringing the equipment to the surface. However, bringing the equipment to surface is expensive and can result in long production outages. In some instances, the reliability of the equipment for the subsea applications has to be designed for more than 20 years.


Typically, electrical power for the subsea operations is generated in two different ways, one being offshore power generation and the other is onshore generating station. In the case of offshore power generation, gas turbine driven generators may be installed on the platforms. In the case of onshore generating stations, subsea devices such as electric submergible pumps (“ESP”) and compressors are located very far from the onshore generating stations, it requires a long tieback power transmission system. Further, using high power high voltage AC transmission systems may minimize the power losses, and the reactive power due to the large capacitance of the power umbilical. In addition, the long distance high power and high voltage transmission/distribution require strong power cables with good insulation capability. The power umbilical can be fully electric or multiplexed wherein both electrical and hydraulic lines are combined to feed power from the power generator to the subsea device.


SUMMARY

This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.


In one aspect, the embodiments disclosed herein relate to an electrical feedthrough assembly having a lower assembly having a first end and a second end. The lower assembly may include an outer body with a lower housing and an upper housing disposed within a bore of the outer body and a first conductor extending from the lower housing to the upper housing, wherein at least one portion of the first conductor is enclosed in a first insulator. Additionally, the lower housing extends axial outward from the outer body to form the first end and the upper housing extends axial outward from the outer body to form the second end. Further, the electrical feedthrough assembly may have an upper assembly having body extending from a first end to a second end. The second body may include a pin end at the first end and the pin end is inserted into an opening of the second end of the lower assembly; a second conductor disposed within the body with at least one portion of the second conductor is enclosed in a second insulator; and a chamber within the body to hold the first conductor. Furthermore, the second conductor is conductively connected to the first conductor and a length of the first conductor is in contact with an electrical contact of the upper assembly.


In one aspect, the embodiments disclosed herein relate to a method of connecting a first end of a lower assembly of an electrical feedthrough assembly to a subsea device; inserting a pin end at a first end of an upper assembly of the electrical feedthrough assembly into a second end of the lower assembly; passing a first conductor of the lower assembly through the pin end and into the upper assembly; inserting the first conductor into a chamber of the upper assembly; contacting the first conductor to a first electrical contact in the upper assembly, wherein a second conductor of the upper assembly is in contact with a second electrical contact connected to the first electrical contact via a conductive wire; connecting a second end of a upper assembly to a subsea tree; contacting the third conductor of a power source to a third electrical contact in the upper assembly; and powering subsea devices conductively through the electrical feedthrough assembly.


Other aspects and advantages will be apparent from the following description and the appended claims.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of a wellhead in accordance with one or more embodiments of the prior art.



FIG. 2 is a cross-sectional view of a lower assembly of an electrical feedthrough assembly in accordance with one or more embodiments of the present disclosure.



FIG. 3 is a cross-sectional view of an upper assembly of an electrical feedthrough assembly in accordance with one or more embodiments of the present disclosure.



FIG. 4 is a cross-sectional view of an electrical feedthrough assembly in accordance with one or more embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure will now be described in detail with reference to the accompanying Figures. Like elements in the various figures may be denoted by like reference numerals for consistency. Further, in the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the claimed subject matter. However, it will be apparent to one of ordinary skill in the art that the embodiments disclosed herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description. Additionally, it will be apparent to one of ordinary skill in the art that the scale of the elements presented in the accompanying Figures may vary without departing from the scope of the present disclosure.


As used herein, the term “coupled” or “coupled to” or “connected” or “connected to” “attached” or “attached to” may indicate establishing either a direct or indirect connection, and is not limited to either unless expressly referenced as such. In addition, as used herein, the terms “upper” and “lower” are merely used to indicate relative position and may change depending on orientation, and are not limited to either unless expressly referenced as such. Wherever possible, like or identical reference numerals are used in the figures to identify common or the same elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale for purposes of clarification. In addition, any terms designating tree or tubing head (i.e., any wellheads or tubing hanger) at a rig type (i.e., any land rig or offshore rig) should not be deemed to limit the scope of the disclosure. As used herein, fluids may refer to slurries, liquids, gases, and/or mixtures thereof. It is to be further understood that the various embodiments described herein may be used in various stages of a well, such as rig site preparation, drilling, completion, abandonment etc., and in other environments, such as work-over rigs, fracking installation, well-testing installation, oil and gas production installation, without departing from the scope of the present disclosure. It is recognized by the different embodiments described herein that a tree or tubing head plays a valuable and useful role in the life of a well. Further, it is recognized that electrical feedthrough assembly configuration and arrangement of components for providing electrical power to subsea devices according to one or more embodiments described herein may provide a cost effective alternative to conventional systems. The embodiments are described merely as examples of useful applications, which are not limited to any specific details of the embodiments herein.


In one aspect, embodiments disclosed herein relate to an electrical feedthrough assembly, such as electrical conductor that may be used to provide power to subsea devices, for example. The electrical feedthrough assembly may also be interchangeably referred to as an electrical penetrator assembly in the present disclosure. According to embodiments of the present disclosure, the electrical feedthrough assembly is an apparatus that may include a lower assembly and an upper assembly coupled together. In a non-limiting example, a pin end of the upper assembly is inserted into an opening of the lower assembly to conductively connect a conductor of the lower assembly to a conductor of the upper assembly. One skilled in the art will appreciate that by conductively connecting the conductor of the lower assembly to the conductor of the upper assembly, power is able to be provided through the electrical feedthrough assembly.


Referring to FIG. 1, FIG. 1 illustrates wellhead 1 in accordance with one or more embodiments of the prior art. Wellheads are well known in the art, and thus, a brief overview is given to help provide a general view of the embodiments disclosed herein. The wellhead 1 includes a tubing head 2 disposed on the wellhead 1. Additionally, the tubing head 1 contains a tubing hanger assembly 3 for engaging down hole equipment (not shown). Furthermore, the wellhead and the tubing head 2 may include a port 4 to perform various wellbore and annulus operations. One with ordinary skill in the art would understand that FIG. 1 illustrates one example of a wellhead; however, the wellhead 1 may take any form (i.e., number of components, shape, or size) known in the art without departing from the scope of the present disclosure.


Now referring to FIG. 2, in one or more embodiments, FIG. 2 illustrates a cross-sectional view of the lower assembly 101 of an electrical feedthrough assembly (See FIG. 4) in accordance with the present disclosure. The lower assembly 101 may include an outer body 114 with a bore 115, such as a metal sub. In some embodiments, a lower housing 116 and an upper housing 117 may be disposed in the bore 115. The lower housing 116 and the upper housing 117 may be made from metal. It is further envisioned that a lower end 118 of the lower housing 116 and an upper end 119 of the upper housing 117 may extend outside the bore 115 to form a first end 105 and a second end 107 of the lower assembly 101, respectively. Furthermore, a first full-metal-jacket (“FMJ”) connector 104 may be inserted into an opening 132 at a first end 105 of the lower housing 116. In a non-limiting example, the first FMJ connector 104 may be a dual redundant metal-to-metal seal with multiple fittings such as the FMJ connector by Halliburton. In some embodiments, an opening 131 of the upper housing 117 may be exposed to a surrounding environment. In addition, an upper end 120 of the lower housing 116 may be coupled to a lower end 121 of the upper housing 117. Further, the lower end 121 of the upper housing 117 may be threaded onto an outer surface 122 to connect to threads 123 in the bore 115. It is further envisioned that the upper housing 117 may have protrusions 124 extending outwardly to land on an inner load shoulder 125 of the outer body 114.


Still referring to FIG. 2, in one or more embodiments, an electrical penetrator 126 may be disposed at the upper end 120 of the lower housing 116. In a non-limiting example, the electrical penetrator 126 may include optics or ceramic to enable electrical transmission. Additionally, a metal-to-metal seal 127 may be inserted between the electrical penetrator 126 and the lower housing 116. As further shown in FIG. 2, the conductor 128 may extend a length of the lower assembly 101 to extend past the first end 105 into the tubing hanger assembly and connect to subsea devices. In a non-limiting example, the conductor 128 may be a wire or a shaft made of a material consisting of copper, gold, silver, aluminum, nickel-cobalt or any combinations thereof. It is further envisioned that the conductor 128 may have the conductor connector 129 attached thereof in the upper housing 117. One skilled in the art will appreciate how the conductor 128 may have an insulator 130, such as a polyether ether ketone (“PEEK”) molding, surrounding a length of the conductor 128 to environmentally isolate the conductor 128. Further, glass bodies (133a, 133b) may be disposed around portions of the conductor 128 and a glass-to-metal seals 160 may be inserted between the glass bodies (133a, 133b) and metal housings (e.g., the electrical penetrator 126). While it is noted that FIG. 2 shows two glass bodies (133a, 133b), one of skill in the art would understand that this is merely a non-limiting example and any number of glass bodies may be used without departing from the present scope of the disclosure.


Now referring to FIG. 3, in one or more embodiments, FIG. 3 illustrates a cross-sectional view of the upper assembly 102 of the electrical feedthrough assembly (See FIG. 4) in accordance with the present disclosure. The upper assembly 102 may be a first body 139 coupled to a second body 140 extending from a first end 110 to a second end 112. It is further envisioned that the second body 140 may be welded at a weld point 146 to the first body 139. In a non-limiting example, a shoulder 152 of the second body 140 lands on a load shoulder 153 of the first body 139. Further, the first body 139 may be made from PEEK molding and the second body 140 may be made from a metal. Furthermore, a second full-metal-jacket (“FMJ”) connector 111 may be inserted into an opening 150 of the upper assembly 102 at the second end 112 to be connected the subsea tree connector of a subsea tree. The second FMJ connector 111 may be the same as the first FMJ connector 104. Additionally, within the first body 139, a chamber 144 may include an opening 145 at the first end 110. One skilled in the art will appreciate how the chamber 144 may be any length and width without departing from the scope of disclosure. In a non-limiting example, the chamber 144 may have a port 147 in fluid communication with a surrounding environment. While it is noted that FIG. 3 illustrates the port 147 at an upper end of the chamber 144, this is merely for example purposes only and the port 147 may be at any portion of the chamber 144 without departing from the scope of disclosure. Furthermore, grease 141 may be applied within the chamber 144. It is further envisioned that the port may have a valve to contain or release fluids from the surrounding environment within the chambers. By having the chamber 144, when a pin end 134 of the upper assembly 102 is inserted into the opening 131 of the lower assembly 101 (see FIG. 2), the conductor 128 (see FIG. 2) of the lower assembly extends past the pin end 134 to sit in the chamber 144. Additionally, the chamber 144 may also include elastomer wiper seals 149 to seal the conductor of the lower assembly within the chamber 144. When the conductor of the lower assembly is within the chamber 144, the conductor of the lower assembly may contact a first electrical contact 136a, which is connected to a second electrical contact 136b via a wire 138. Further, the second electrical contact 136b is conductively connected to a conductor 135. In a non-limiting example, the conductor 135 travels through an upper connector 154 to contact the second electrical contact 136b. One skilled in the art will appreciate how a length of the conductor 135 may be surrounded by glass bodies 142.


Now referring to FIG. 4, in one or more embodiments, an electrical feedthrough assembly 100 in accordance with the present disclosure is illustrated. The electrical feedthrough assembly 100 may include the lower assembly 101 and the upper assembly 102 coupled together, as described in FIGS. 2 and 3. The lower assembly 101 may be connected to the tubing hanger assembly by landing a first shoulder 103 of the lower assembly 101 on a shoulder of the tubing hanger assembly. It is further envisioned that the first FMJ connector 104 may be used to couple the first end 105 of the lower assembly 101 to a tubing hanger connector of the tubing hanger assembly. In some embodiments, the second FMJ connector 111 may be used to couple the second end 112 of the upper assembly 102 to a subsea tree connector of a subsea tree.


In one or more embodiments, the upper assembly 102 is lowered (see arrow 143) into the lower assembly 101 such that a portion of the upper assembly 102 is within the lower assembly 101. In a non-limiting example, the pin end 134 of the upper assembly 102 is inserted into the opening 131 of the lower assembly 101 such that a conductor 128 of the lower assembly 101 is conductively connected to the conductor 135 of the upper assembly 102. It is further envisioned that the upper assembly 102 may include a plurality of electrical contacts (136a, 136b). While it is noted that FIG. 4 shows two electrical contacts (136a, 136b), one of skill in the art would understand that this is merely a non-limiting example and any number of electrical contacts may be used without departing from the present scope of the disclosure. In a non-limiting example, once the upper assembly 102 is coupled to the lower assembly 101, the conductor 128 enters the chamber 144 of upper assembly 102 such that the first electrical contact 136a of the upper assembly 102 may contact a conductor connector 129 of the conductor 128 of the lower assembly 101. In addition, the wire 138 connects the first electrical contact 136a to the second electrical contact 136b in contact with the conductor 135 of the upper assembly 102. One skilled in the art will appreciate that by coupling the lower assembly 101 to the upper assembly 102 and having the electrical contacts (136a, 136b) conductively connecting each of the conductors (128, 135), a continuous conductor is formed within the electrical feedthrough assembly 100. With the continuous conductor 113 being formed, power may be provided through the electrical feedthrough assembly 100. Further, the conductor 135 extends out from the upper assembly 102 to be attached to a power source.


Electrical feedthrough assemblies, according to embodiments herein, are apparatuses that include multiple conductors within a lower assembly and upper assembly, which may include a chamber with grease in upper assembly to compensate for motion and thermal expansion, and may include no environment compressible bladders installed within the multiple components that are arranged in a certain layout and contained within the electrical feedthrough assembly. The elimination of environment compressible bladders and the need for multiple fluids in the electrical feedthrough assembly significantly improves the operational safety, reliability, and longevity during drilling, completions, production, and work-over operations, while providing continuous power through the electrical feedthrough assembly. Further, a pin end of the upper assembly is inserted into an opening of the lower assembly to conductively connect a conductor of the lower assembly to a conductor of the upper assembly. In addition, one or more glass-to-metal seals and metal-to-metal seals, along with PEEK molding, may be used to environmentally isolate the conductors of the electrical feedthrough assembly. Furthermore, other instruments and devices, including without limitation, sensors and various valves may be incorporated within the electrical feedthrough assembly.


Conventional electrical feedthrough devices for subsea power distribution in the oil and gas industry are typically isolated conductors with various fluid profiles within each bladder of said conventional electrical feedthrough devices. Conventional methods may include an extensive layout and arrangement to ensure the conductors may be properly isolated and effective within said conventional electrical feedthrough devices. In some instances, conventional electrical feedthrough devices are manufactured to include multiple slots and chambers used to hold the bladders with various fluid profiles and an apparatus to the various fluid profiles do not mix. Such conventional electrical feedthrough devices may be more expensive to manufacture because of the extra machining needed to account for the various fluid profiles. Further, the use of bladders with various fluid profiles may increase the potential for gas and cycling build-up within the conventional electrical feedthrough devices as well as of leak paths to the environment. Additionally, conventional methods merely use elastomer seals which may cause the conventional electrical feedthrough devices to consistently fail an ohms test. This additional need for bladders with various fluid profiles and elastomer seals, increases the number of leak paths, adds to manufacturing and installation costs, and decreases the operational safety. Furthermore, conventional electrical feedthrough devices are designed to have the equipment in the subsea applications for more than 20 years.


The electrical feedthrough assembly is often used for assisting in providing power and electricity to well devices. Examples of the electrical feedthrough assembly may be used for drilling, completion applications, including natural flow, gas lift, and artificial lift systems in onshore and offshore wells and to continue producing for conventional and unconventional wells. Examples of electrical feedthrough assembly, according to embodiments herein, may include a two-piece assembly for nominal wellhead sizes range from 7 1/16 inches to 11 inches and above, and with any power range required for various well operations. Achieving a successful conductor connection of the electrical feedthrough assembly in the tubing hanger is an important part of a well operation. Additional challenges further exist in a subsea environment for safely conductively connecting the electrical feedthrough assembly to the tubing hanger while both minimizing costs and providing reliability for future changes to the overall layout of a field or well.


Accordingly, one or more embodiments in the present disclosure may be used to overcome such challenges as well as provide additional advantages over conventional methods of retention, as will be apparent to one of ordinary skill. In one or more embodiments, an electrical feedthrough assembly may be safer, faster, and lower in cost as compared with conventional methods due, in part, to multiple electrical contacts within the electrical feedthrough assembly conductively connecting conductors from a lower and upper assembly of the electrical feedthrough assembly. Additionally, the electrical feedthrough assembly may comprise a chamber (with grease) and pin end within the upper assembly to aid in conductively connecting the conductor from the lower assembly to the conductor of the upper assembly to form a continuous conductor that require no need for bladders with various fluid profiles, and thus, relaxing control tolerances and improving manufacture (i.e. reduced cost and reduced time to manufacture). Overall the electrical feedthrough assembly may minimize product engineering, risk associated with electrical feedthrough assembly, reduction of assembly time, hardware cost reduction, and weight and envelope reduction. It is further envisioned that the electrical feedthrough assembly may be used periodically for various well operations for limited period of times. In some instances, the electrical feedthrough assembly may be periodically re-greased in the chamber of the upper assembly. Additionally, one skilled in the art will appreciate how the electrical feedthrough assembly, according to embodiments herein, may be attached to any subsea devices without the departing from the scope of the present disclosure.


Furthermore, methods of the present disclosure may include use of the electrical feedthrough assembly 100 and other structures, such as in FIGS. 2-4 for providing power to subsea devices. Because the method may apply to any of the embodiments, reference numbers are not referenced to avoid confusion of the numbering between the different embodiments.


Initially, a lower assembly of an electrical feedthrough assembly is coupled to a tubing hanger. In a non-limiting example, a first FMJ connector inserted into an opening of a lower housing of the lower assembly is connected to a tubing hanger connector such that a conductor of the lower assembly extends into the tubing hanger. Additionally, an electrical penetrator may be used to aid in continuing the conductor into the lower assembly. Next, an upper assembly of the electrical feedthrough assembly is landed on the lower assembly. In a non-limiting example, a pin end at a first end of the upper assembly is inserted into an opening of an upper housing of the lower assembly opposite the end of the FMJ connector. Further, first end of the upper assembly lands within the lower assembly. By inserting the pin end, a conductor connector of the conductor of the lower assembly extends into the upper assembly though the pin end to contact a first electrical contact in the upper assembly. Further, the first electrical contact is connected to a second electrical contact via a wire and a conductor of the upper assembly contacts the second electrical contact. With the conductor of the lower assembly contacting the first electrical contact, the conductor of the lower assembly is conductively connected to the conductor of the upper assembly forming a continuous conductor line. In addition, a second FMJ connector inserted into an opening at the second end of lower assembly is connected to a subsea tree.


In some embodiments, a chamber is provided within the upper assembly. When the pin end of the upper assembly is inserted into the lower assembly, the conductor of the lower assembly enters the chamber. In addition, seals are provided in the chamber to seal around the conductor of the lower assembly. Further, the conductor of the lower assembly comes into contact with the first electrical contact within the chamber. Furthermore, the first electrical contact extends out of the chamber such that the wire may connect the first electrical contact to the second electrical contact outside of the chamber. It is further envisioned that the chamber may be provided with grease to electrically lubricate the conductor of the lower assembly and the first electrical contact. Additionally, the chamber may be periodically re-greased for various well operations. In some embodiments, fluids from a surrounding enjoinment may flow into and out of the upper assembly via a port in fluid communication with the chamber. Furthermore, the fluids may be contained or released within the chambers by selectively opening or closing a valve of the port. At a second end of the upper assembly, the conductor of the upper assembly extends outwardly to connect to a power/electrical such that power/electricity may be provided to the electrical feedthrough assembly. Furthermore, lengths of the conductors in the lower and upper assemblies may be insulated with PEEK molding. Additionally, glass bodies may be provided on the conductors in the lower and upper assemblies. It is further envisioned that glass-to-metal seals may be provided to seal the glass bodies from metal parts. In addition, metal-to-metal seal may be provided to seal any meat parts within the electrical feedthrough assembly. With the electrical feedthrough assembly attached from the tubing hanger to subsea tree, power/electricity may travel from a source (at the seabed, platform, or onshore), via cables or wires, to the conductors of the electrical feedthrough assembly such that power/electricity may be provided to subsea devices.


While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the disclosure should be limited only by the attached claims.

Claims
  • 1. An electrical feedthrough assembly for providing power to a subsea device from a power source, the electrical feedthrough assembly comprising: a lower assembly having a first end and a second end, wherein the lower assembly comprises: an outer body with a lower housing and an upper housing disposed within a bore of the outer body,wherein the lower housing extends axial outward from the outer body to form the first end,wherein the upper housing extends axial outward from the outer body to form the second end, anda first conductor extending from the lower housing to the upper housing, wherein at least one portion of the first conductor is enclosed in a first insulator; andan upper assembly having a first body coupled to a second body extending from a first end to a second end, wherein the upper assembly comprises: a pin end at the first end of the upper assembly, wherein the pin end is inserted into an opening of the second end of the lower assembly,a second conductor disposed within the second body, wherein at least one portion of the second conductor is enclosed in a second insulator, and wherein the second conductor extends out from the upper assembly, anda single chamber within the first body having an opening at the first end of the upper assembly to receive and hold the first conductor,wherein the second conductor is conductively connected to the first conductor,wherein a length of the first conductor is in contact with a first electrical contact of the upper assembly,wherein the first electrical contact is connected to a second electrical contact of the upper assembly via a conductive wire, andwherein the second electrical contact is conductively connected to the second conductor.
  • 2. The electrical feedthrough assembly of claim 1, wherein a shoulder of the second body lands on a load shoulder of the first body, and the first body and the second body are welded together.
  • 3. The electrical feedthrough assembly of claim 1, wherein the first insulator and the second insulator are formed from a polyether ether ketone molding.
  • 4. The electrical feedthrough assembly of claim 1, further comprising a port exposed to a surrounding environment and in fluid communication with the single chamber.
  • 5. The electrical feedthrough assembly of claim 1, wherein the pin end is a shuttle pin for the length of the first conductor to travel through.
  • 6. The electrical feedthrough assembly of claim 1, wherein protrusions of the upper housing abut a load shoulder of the outer body, and wherein threads of the upper housing are threaded to threads of the outer body.
  • 7. The electrical feedthrough assembly of claim 6, wherein the lower housing is coupled to the upper housing.
  • 8. The electrical feedthrough assembly of claim 1, further comprising at least one electrical penetrator in the lower assembly.
  • 9. The electrical feedthrough assembly of claim 1, further comprising at least one glass-to-metal seal and at least one metal-to-metal seal within the lower assembly.
  • 10. A method for providing power to a subsea device from a power source using an electrical feedthrough assembly, the method comprising: connecting a first end of a lower assembly of the electrical feedthrough assembly to the subsea device, the lower assembly comprising an outer body with a lower housing and an upper housing disposed within a bore of the outer body, wherein the lower housing extends axial outward from the outer body to form the first end, and wherein the upper housing extends axial outward from the outer body to form the second end;inserting a pin end at a first end of an upper assembly of the electrical feedthrough assembly into an opening of the second end of the lower assembly, the upper assembly comprising a first body coupled to a second body extending from the first end of the upper assembly to a second end of the upper assembly;passing a first conductor of the lower assembly through an opening of a single chamber within the first body at the first end of the upper assembly;inserting and holding the first conductor into the single chamber;contacting the first conductor to a first electrical contact in the upper assembly, wherein a second conductor of the upper assembly is in contact with a second electrical contact connected to the first electrical contact via a conductive wire;connecting the second end of the upper assembly to a subsea tree;passing the second conductor out from the upper assembly and attaching the second conductor to a power source; andpowering the subsea device conductively through the electrical feedthrough assembly via the power source.
  • 11. The method of claim 10, further comprising insulating a length of the first and second conductor with a polyether ether ketone molding.
  • 12. The method of claim 11, further comprising providing a glass-to-metal seal on at least one portion the first conductor and the second conductor with the polyether ether ketone molding.
  • 13. The method of claim 12, further comprising providing a metal-to-metal seal within the electrical feedthrough assembly.
  • 14. The method of claim 10, further comprising greasing the single chamber with grease.
  • 15. The method of claim 10, further comprising exposing the single chamber to fluids of a surrounding environment through a port in fluid communication with the single chamber.
  • 16. The method of claim 10, further comprising sealing the first conductor in the single chamber with an elastomer seal.
  • 17. The electrical feedthrough assembly of claim 1, further comprising a first full-metal-jacket connector inserted into an opening at the first end of the lower assembly.
  • 18. The electrical feedthrough assembly of claim 17, further comprising a second full-metal-jacket connector inserted into an opening at the second end of the upper assembly.
  • 19. The electrical feedthrough assembly of claim 1, wherein the single chamber further comprises grease.
  • 20. The electrical feedthrough assembly of claim 1, wherein the first body is made from polyether ether ketone molding and the second body is made from a metal.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/018851 2/19/2020 WO
Publishing Document Publishing Date Country Kind
WO2020/172297 8/27/2020 WO A
US Referenced Citations (39)
Number Name Date Kind
3729699 Briggs Apr 1973 A
3839608 De Vries Oct 1974 A
4039237 Cullen Aug 1977 A
4757859 Schnatzmeyer Jul 1988 A
4767349 Pottier Aug 1988 A
4795359 Alcock Jan 1989 A
4825946 Schnatzmeyer May 1989 A
4859196 Durando Aug 1989 A
4948377 Cairns Aug 1990 A
5334032 Myers Aug 1994 A
5645442 Cairns Jul 1997 A
5782891 Hassler Jul 1998 A
6832924 Maletzki Dec 2004 B2
7112080 Nicholson Sep 2006 B2
7520768 Nicholson Apr 2009 B2
7695301 Mudge, III Apr 2010 B2
7828573 Butaud Nov 2010 B2
8708727 Spahi Apr 2014 B2
8816197 Campbell Aug 2014 B2
8968018 Sivik Mar 2015 B2
9263824 Cairns Feb 2016 B2
9391392 Ranalli Jul 2016 B2
9715068 Cairns Jul 2017 B2
9853394 Hamilton-Gahart Dec 2017 B2
9941622 Campbell Apr 2018 B1
10044134 Nicholson Aug 2018 B2
10276969 Campbell Apr 2019 B2
10302780 Inglis May 2019 B2
11189872 Drews Nov 2021 B2
20040266240 Abbey Dec 2004 A1
20100035452 Mudge, III et al. Feb 2010 A1
20130065429 Spahi et al. Mar 2013 A1
20130183853 Sivik et al. Jul 2013 A1
20150255974 Burrow Sep 2015 A1
20160266335 Durrant Sep 2016 A1
20180219191 Drews Aug 2018 A1
20190044256 Gelderd Feb 2019 A1
20210062589 Kennedy Mar 2021 A1
20220238258 Van Mook Jul 2022 A1
Foreign Referenced Citations (4)
Number Date Country
2192316 Jan 1988 GB
2429587 Feb 2007 GB
0140837 Jun 2001 WO
2016008525 Jan 2016 WO
Non-Patent Literature Citations (3)
Entry
RMSpumptools: “RMSpumptools—WellConnect(TM)” Sep. 15, 2011, p. 1, XP054980544, retrieved from the Internet: URL:https://www.youtube.com/watch?v=yMQVRGstNtM [retrieved on Jun. 9, 2020 (1 page).
International Search Report issued in International Application No. PCT/US2020/018851 dated Jun. 24, 2020 (4 pages).
Written Opinion issued in International Application No. PCT/US2020/018851 dated Jun. 24, 2020 (7 pages).
Related Publications (1)
Number Date Country
20220170339 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
62808122 Feb 2019 US