The Present Disclosure relates generally to the field of electrical connectors. In particular, the Present Disclosure relates to multi-conductor shielded and unshielded electrical connectors used in cable harnesses.
Today, traditional wire harness manufacturing presents a plurality of “single wires” terminated to a terminal. As is best illustrated in
Currently, as best illustrated in
This approach is seen today with High Speed Controller Area Network and FlexRay technologies, which is labor intensive, as the twisting of the wire is performed after assembly into the connector cavity body and done so with inconsistent twist rate control which affect, inter alia, impedance control and, thereby, performance for higher speed technologies such as Ethernet or LVDS (Low Voltage Differential Signaling). To further complicate the assembly, each pair of terminals must be attached to the wire leads at both ends before the twist occurs, resulting in the potential imbalance of terminal presentation at the second (final) end of the twisted wire length prior to insertion in the connector. Either an untwisted length is required to allow each terminal to fit within its respective cavity, or the two terminals must be inserted at the same time (as a pair) to minimize this untwisted effect caused by the nature of the insertion process in traditional wire harness manufacturing.
In certain applications, further requirements such as moisture and debris prevention, the addition of seals further complicates this assembly and creates added difficulty in maintaining consistency, resulting in decreased assembly efficiency.
Grouping two terminals prior to termination allows the presentation of the grouped terminals to a termination station of a chosen termination process. Doing so allows for pre-twisted wires to be terminated at equal points of the cable length, assuring minimized skew between cable lengths. This grouped presentation also provides maximized balance between point-to-point ends of the cable termination. The end element of this grouped terminals and dual-ended twisted pair cable provides a tightly-managed, unitized terminated link that represents what has traditionally been provided by a single wire terminated at each end for wire harness manufacturing processes.
Accordingly, a connector system is provided used for connecting a wire harness. The connector system includes a first connector and a second connector for complete mechanical and electrical connection. In one embodiment, each connector link includes an unshielded twisted pair cable having unshielded sub-connector attached at respective ends of the twisted pair cable. The unshielded twisted pair cable, or connector link assembly, is introduced during the harness build process, and each sub-connector is retained in corresponding pockets formed in the first connector and second connector.
In a further embodiment, a connector system is provided for use in a wire harness assembly, and includes a first connector and second connector. A plurality of singularly terminated lead wire assemblies are retained in terminal receiving cavities in each respective connector. A shielded connector link comprising a jacketed twisted pair cable including an interleaved foil shield and a shielded sub-connector positioned at each end of the cable is similarly retained in each of the harness housings.
In a further embodiment, a connector system is provided that utilizes a connector link in a modular harness connector configuration. A plurality of individual connectors are interconnected within a wiring harness, and have a base connector with a series of first connectors interlocked to each other in an array. Each first connector has a single connector link, or multiple connector links depending on the specific requirement, with a plurality of traditional terminated single lead wire assemblies accompanying each connector links, which can also be connected to individual connectors or ganged connector arrays.
In alternative embodiments, the connector system is configured to be used in either a sealed or unsealed version. In such a case, each connector includes a wire seal or grommet secured to a terminated lead wire inserted to an accommodating cavity or chamber in a respective one of the connectors for the prevention of debris and moisture from entering the connector through the wire accommodating portion of each connector. A perimeter or interface seal may also be provided at the connecting interface between the first connector and the second connector. The perimeter seal is positioned on one of the connectors and, upon connecting the first connector with the second plug connector, a portion of the second connector overlaps the seal, creating a barrier and preventing debris and moisture and debris from entering the connector through the interface portion of the connector system.
To better understand the above-described objectives, characteristics and advantages of the Present Disclosure, embodiments, with reference to the drawings, are provided for detailed explanations.
The organization and manner of the structure and operation of the Present Disclosure, together with further objects and advantages thereof, may best be understood by reference to the following Detailed Description, taken in connection with the accompanying Figures, wherein like reference numerals identify like elements, and in which:
While the Present Disclosure may be susceptible to embodiment in different forms, there is shown in the Figures, and will be described herein in detail, specific embodiments, with the understanding that the Present Disclosure is to be considered an exemplification of the principles of the Present Disclosure, and is not intended to limit the Present Disclosure to that as illustrated.
As such, references to a feature or aspect are intended to describe a feature or aspect of an example of the Present Disclosure, not to imply that every embodiment thereof must have the described feature or aspect. Furthermore, it should be noted that the description illustrates a number of features. While certain features have been combined together to illustrate potential system designs, those features may also be used in other combinations not expressly disclosed. Thus, the depicted combinations are not intended to be limiting, unless otherwise noted.
In the embodiments illustrated in the Figures, representations of directions such as up, down, left, right, front and rear, used for explaining the structure and movement of the various elements of the Present Disclosure, are not absolute, but relative. These representations are appropriate when the elements are in the position shown in the Figures. If the description of the position of the elements changes, however, these representations are to be changed accordingly.
As shown in
Each connector 40, 70 includes a plurality of cavities molded into the main body portions thereof. These cavities receive a plurality of male 1 and female 11 electrically conductive terminal leads. A connector link 100 having an impedance balanced cable pair—or typically, a twisted pair or twinax cable—110, including a sub-connector 120 at each end, is additionally received in a pocket 125 formed in each respective connector. A locking structure that includes a resiliently-deflecting locking member 22 is formed on one connector and selectively engageable with a locking projection 24 formed on the other connector for securing the connectors together when fully coupled.
The first connector 40 includes a housing 42 preferably molded from an electrical insulative material, and includes a main body portion 50, a front or mating portion 52 extending from one side of the main body portion 50 and a rear portion or terminal receiving portion 54 extending from an opposite side of the main body portion 50. The main body portion 50 includes a plurality of cavities or passages 60 formed therein for receiving a plurality of first electrically conductive terminals 12. The first electrically conductive terminals 12 are inserted through openings formed in the rear portion 54 of the housing 42 and retained in the housing 42 by a resilient spring finger 66. Corresponding openings 68 aligned with the terminal passages 60 are formed in the mating or front portion 52 of the housing 42 for receiving contact portions 7 of second electrically conductive terminals 2 retained in the second connector 70 therethrough for electrical engagement with the first terminals 12.
A second or receptacle connector 70 is similarly and preferably molded from an insulative material and configured to mate or receive the first connector 40 therein. The second connector 70 includes a main body portion 80, a front or mating portion 82 extending from one side of the main body portion 80 and a rear or terminal receiving portion 84 extending from an opposite side of the main body portion 80. The main body portion 80 includes a plurality of cavities or passages 90 formed therein for receiving a plurality of second electrically conductive terminals 2. The terminals are inserted through openings formed in the rear portion 84 of the receptacle connector housing 72 and similarly retained in the housing 72 by a resilient spring finger 98. The terminals are aligned with respective first conductive terminals of the plug connector 40 and, upon mating, make full electrical connection with the first electrically conductive terminals of the plug connector 10.
As best illustrated in
Each second electrically conductive terminal 2 is stamped and formed from an electrically conductive material such as copper or copper based alloy. Each terminal 2 has a main body portion 3 with a wire receiving portion 4 formed at one end of the main body portion 3 and a mating end 7 extending from a second end of the main body portion 3. The wire receiving portion 4 has a crimp portion 6 for securing a lead wire 9 to the wire receiving portion 4 of the electrical terminal 2 with the lead wire 9 extending rearwardly from the receptacle connector 70.
As previously noted and illustrated in
Similarly, each terminal 132 of the connector link 100 is preferably formed from an electrically conductive material. Each terminal 132 comprises a body portion, a contact portion at one end of the body portion and a securing end 134 formed at the other end of the body portion. The securing end 134 is formed with a securing portion for securing to an end portion of the one of the lead wires of the twisted pair cable 110. In the preferred embodiment, the terminal 132 is crimped to the wire, but any securing method may be used. As illustrated, each connector link 100 has a total of four terminals 132, a pair of terminals 132 crimped to each single wire of the twisted pair cable 110. A terminal is crimped to each end of the twisted pair cable 110.
As best illustrated in
In the preferred embodiment, the connector system 10 is illustrated as having an unshielded connector link. In other words, the twisted pair cable 110 is sheathed but does not include an inner foil EMI shield. The preferred embodiment is utilized with an impedance- or electrically-balanced cable pair or twisted pair, but it should be noted that this includes various other balanced cable pairs, including twin-ax cables having two conductors, twisted quad cables and other high data rate cables having multi conductor cores. Consequently, the sub-connectors 120 are not required to have any shield, either.
In
The connector assembly or harness 10 in its simplicity generally includes a first and second connector 40, 70, but may include a plurality of first and second connectors 40, 70. In the automotive industry, a typical connector harness runs throughout the entire vehicle branching out to transfer power and signal to all electrical peripheral devices and requires multiple independent harness assemblies. In certain instances, the high data rate transmission is required and the use of the above connector link accomplishes this. In these cases, the connector link (sometimes referred to as a data link) is incorporated into one or several of the vehicle harness branches, as illustrated in
During the assembly portion of the harness build process, the connector link 100 is provided as a complete sub-assembly and is introduced to the harness 10 by simply inserting respective sub-connectors 120 of the data link to appropriate positions in the harness end connectors 40, 70, as shown in
Each of the connectors 40, 70 of the harness 10 has a molded pocket 125 for receiving one of the ends of the sub-connector 120 for the connector link 100. Upon insertion into the receiving pockets 125 of the base connector 40, the sub-connector 120 of each connector link 100 is retained by a latch or alternative retaining mechanism used to securely hold each sub-connector 120 within the connector 40. Generally, a deflectable latch on either the sub-connector 120 or base connector 40 engages a shoulder or recess in the other connector not allowing the sub-connector 120 to be removed from the pocket in the base connector 40.
To properly align and guide the sub-connectors 120, each sub-connector 120 has a projection or rib 121 molded on the exterior of the housing so that each sub-connector 120 can be inserted into a slot 123 on the connector housing to maintain the correct position. Although the use of a rib 121 and slot 123 is shown to properly key the connector link to the housing, other methods can also be used. Alternatively the basic cross-sectional shape of the connector link housing 120 can also be used. Additionally, the different polarizations and keying options are be used within a connector to properly position multiple connector links 100 within each connector 40. This allows for proper polarity and continuity of the connector link 100 and additionally allows for any final adjustment to maintain balance and symmetry of the twisted pair cable 110. By fully engaging the sub-connectors 120 with the twisted pair cable 110 there cannot be any asymmetrical un-twisting. That is, any untwist or twisting happens simultaneously with the wire, therefore maintaining electrical balance, and any incidental un-twisting that may occur during handling can also be corrected according without loss of symmetry.
Additionally, to assure that single terminated lead wire assemblies 1, 11 and connector links 100 are properly located and retained within each respective connector housing 40, 70, a Terminal Position Assurance (TPA) device, or Independent Secondary Lock (ISL) device, 140, as best shown in
After all of the terminated lead wire assemblies 11 and connector links 100 are positioned within the housing 942, the TPA/ISL 140 is then actuated. Generally, the TPA/ISL 140 is translated or moved to engage a cooperating feature on a terminal 12 or, in this embodiment, a terminal 12 and a sub-connector 120. This typically is a window, recess or shoulder, and is formed on each terminal and sub-connector housing. A post, boss or projection formed on the TPA/ISL 140 is received in the window or recess upon actuation of the TPA/ISL device 140 to a second final or locked position. If the TPA/ISL 140 cannot be moved to the second position, this triggers or provides a notification or detection that at least one of the terminals 12 or connector links 100 is not properly positioned within the connector housing 42 and the connector 40 should be inspected and further action is needed to adjust or fix the connector 40 so that is correctly assembled. Additionally, if the TPA/ISL 140 cannot be moved to its second position, it also prevents the first and second connectors 40, 70 of the harness assembly or connector system 10 from being completely connected together, a further indication that one of the connectors is not properly assembled.
Tuning the connector system can be accomplished by adjusting terminal to terminal spacing, and the impedance and crosstalk is directly affected by the distance between adjacent terminals. These terminals can be positioned within a multi-circuit connector or in a single sub-connector having at least a single pair of terminals. Additionally, in a connector system that has multiple rows of terminals, the distance between rows of terminals also affect electrical performance. For instance, in single row connectors, the only spacing between terminals is in a side-by-side orientation, so therefore, the distance between adjacent terminals have an effect of impedance and crosstalk. With multi-row connectors, not only side-by-side spacing affects the performance but row-to-row spacing and grouping between terminal to terminal spacing combined with row to row.
A single pair of wire termination assemblies can then be grouped in multiple single pair terminated assemblies to arrange for multiple lanes of differential pairs, as the technology demands. Having individual pairs allows for placement within a larger array at desired distance from other similar signal types, or those of an aggressive nature, allowing for minimizing signal cross-talk or any aggression signal influence on the differential pair.
In the present embodiment, a connector 40 comprises a plurality of single terminated lead wires 11 and one or more connector links 100 with a sub-connector 120 containing a single grouping of a pair of terminals 132. Depending on the modular configuration of the connector 40, various arrangements of terminated lead wire assemblies and connector links can be specified, all of which having a spacing between adjacent terminals or groups of terminals. For illustrative purposes, referring to
The branch connectors 160 can include any combination of receiving pockets 162 and single cavities 164. For instance, one branch connector 160 can include two side-by side pockets 152 for receiving one or two sub-connectors 120 of a connector link 100. A second branch connector 160 may include a single centrally located receiving pocket 162 for the connector link and a single cavity 164 positioned exterior on each side of the connector link pocket 162, as specified in
In all arrangements, and in particular the arrangement with the high data rate transmission, the signal must be tuned to optimize efficiency, balance and minimize crosstalk. For this illustration, this involves adjusting the side-to-side spacing in the branch connectors 160 and the combination of side-to-side and row-to-row in the base connector. As best shown in
In cases where protection from debris and/or moisture is required, the harness connector system incorporates a perimeter seal that prevents the debris and/or moisture from entering the connector system from the interface side of the assembly. Referring to
From the rear of the connector, wire seals or grommets 112 are used to prevent the ingress of debris and/or moisture from the terminating end by providing a seal between the wire and the housing cavity 60 where the lead assembly 11 is inserted to the housing 42. In the case where wire seals are used, a circular seal surrounds the wire in a tight registration and is crimped along with the wire to the crimp portion of the conductive terminal 1.
Shown in
While a preferred embodiment of the Present Disclosure is shown and described, it is envisioned that those skilled in the art may devise various modifications without departing from the spirit and scope of the foregoing Description and the appended Claims.
The Present Disclosure claims priority to prior-filed U.S. Provisional Patent Application No. 61/674,466, entitled “Differential Pair Link For Ethernet Automotive Harness Wiring,” filed on 23 Jul. 2012 with the United States Patent And Trademark Office. The content of the aforementioned Patent Application is incorporated in its entirety herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/051685 | 7/23/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/018533 | 1/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4126935 | Rhines et al. | Nov 1978 | A |
5222898 | Fedder et al. | Jun 1993 | A |
5314356 | Isohata | May 1994 | A |
5664967 | Hatagishi et al. | Sep 1997 | A |
6558204 | Weatherley | May 2003 | B1 |
6780069 | Scherer et al. | Aug 2004 | B2 |
7867033 | Kumagai | Jan 2011 | B2 |
20040023552 | Chen | Feb 2004 | A1 |
20090095501 | Toyama | Apr 2009 | A1 |
20100062643 | Kumagai et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
19739503 | Mar 1999 | DE |
2003-217358 | Jul 2003 | JP |
2004-063360 | Feb 2004 | JP |
2004-071404 | Mar 2004 | JP |
2008-041287 | Feb 2008 | JP |
2010-272366 | Dec 2010 | JP |
WO 2009017186 | Feb 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20150155670 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61674466 | Jul 2012 | US |