This invention relates to housings for electrical devices such as connectors, fuses, and circuit breakers and, more particularly, to an improved housing having a non-integral cable de-tensioning member which is removably attached to the housing for simple economical replacement in the event of breakage. This invention also relates to an improved busbar for attachment to circuit breakers and to a method of making such a busbar.
Housings for electrical devices, such as connectors, circuit breakers, and fuse panels, are used in many applications, including recreational vehicles such as motor homes and boats. In a typical application, the housing receives multiple cables for connection to devices within the housing and to carry electrical power to a number of devices outside of the housing. It is good practice to use de-tensioning devices within the housing to insure that electrical connections between the cables and the devices within the housing are not strained or stressed if tension is applied to the cable at some point outside the housing, an event which commonly occurs during installation and/or service.
One way to provide a de-tensioning structure is to mold a port into a panel of the housing having opposing resilient fingers defining a narrow slit-like aperture which unidirectionally resists passage of an electrical cable through the aperture. In short, the fingers permit the insertion of the cable into the housing but resist any movement in the opposite direction such as may occur if the cable were tugged or pulled at some point outside of the housing.
The problem with this approach is that the opposed fingers which make up the anti-tensioning device are frequently broken off during installation. Under these circumstances, good practice requires discarding and replacing the entire housing. Where the housing is complex, such a practice is costly and time consuming.
A first aspect of this invention is the creation and provision of an improved housing for electrical devices having a non-integral; i.e., separately formed electrical cable outlet port member which provides the desired de-tensioning characteristic but which, because it is formed separately from the housing, can be economically and quickly replaced if broken during the installation or servicing procedures.
The non-integral outlet port member and its association with the housing can take any of several shapes and configurations, two of which are disclosed in detail in this document. In one form, an essentially rectangular member is screwed or snapped to a rear panel of the housing. In another form, the member is configured so as to slide into an opening in a side panel of the housing and be retained by a separate cover.
Another aspect of the invention is the provision of an inexpensive, easily formed busbar for mounting within an electrical device housing to receive a plurality of conventional circuit breakers and make electrical connections therewith. The improved busbar can be manufactured by creating an inexpensive stamping and thereafter bending portions of the stamping to produce the plurality of spaced, parallel stabs. In the configuration disclosed herein, the spacing between the stabs is independent of the height of the stabs.
Other objects, advantages and applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Referring now to
The housing is further provided with an integral, rigid, rear panel 18 having formed therein an essentially rectangular opening having a peripheral edge 20 adapted to removably receive, a molded plastic outlet port member 22 having electrical cable ports 23 defined by opposed resilient plastic fingers 24 which are designed to unidirectionally resist passage of an electrical cable 43 there through and to omitpermit passage of the cable in the opposite direction. Holes 26 are provided in the member 22 to receive screws 27 which enter into bosses 28 formed in the panel 18 so that the port member 22 may be removably attached to the housing 10. As shown in
Housing 10 further comprises an interior panel 30 which essentially divides the interior of the housing into AC and DC sections, the AC section being the larger section on the left, as shown in FIG. 1. On the DC side, a fuse panel 32, receiving a plurality of standard automotive-type fuses 34, is provided. On the AC side, the panel 30 is configured to receive an aluminum busbar 36 hereinafter described in detail. Conventional circuit breakers 38 are mounted on the stabs of the busbar 36 in a spaced, parallel stack as shown in FIG. 1. Obviously, other configurations and/or interior arrangements may be provided.
Additional electrical connective devices such as the junction block shown at 40 may be provided on the interior of the housing 10. In addition, the rear panel 18 is provided with knockouts 42 for cable routing purposes.
Because of the non-integral nature of the member 22 with the housing 10, a number of members 22 may be taken to the job site and readily substituted into the place of the original member should one or more of the fingers 24 be broken off during the installation or servicing procedure. When this occurs during servicing, the non-integral nature of the member 22 allows it to be removed and replaced without loss of the de-tensioning feature which good electrical service and installation practice requires.
Referring now to
The housing 50 receives any of a number of different types of electrical devices, in this case, a snap-in bracket 58 carrying connectors 60. A top panel 62 of the housing 50 is provided with knock-outs 64 for cable routing purposes. A cover 66 of injection molded plastic construction is provided with edge loops 68 operating with tabs 70 on the housing 50 to provide a snap-on relationship.
As shown in
Referring now to
The configuration of the busbar 36; i.e., flat and planar, is shown in
Number | Name | Date | Kind |
---|---|---|---|
4236778 | Hughes et al. | Dec 1980 | A |
4304957 | Slater et al. | Dec 1981 | A |
4414427 | Slater et al. | Nov 1983 | A |
5207591 | Ozaki et al. | May 1993 | A |
5241136 | Michaelis et al. | Aug 1993 | A |
5474475 | Yamaguchi | Dec 1995 | A |
5479505 | Butler et al. | Dec 1995 | A |
5645443 | Schaller | Jul 1997 | A |
5726392 | Farr et al. | Mar 1998 | A |
5759053 | Sugiyama | Jun 1998 | A |
5764487 | Natsume | Jun 1998 | A |
5928004 | Sumida et al. | Jul 1999 | A |
6007351 | Gabrisko, Jr. et al. | Dec 1999 | A |
6194659 | Cornu | Feb 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
Parent | 09752191 | Dec 2000 | US |
Child | 11101367 | US |