Various embodiments relate to electrical junction boxes and electrical connections for electrical junction boxes.
There is an ever present desire to reduce components and improve the efficiencies of existing components, particularly in electronics. For automotive electronics, such improvements can decrease weight and size of a vehicle, thereby enhancing fuel economy.
According to at least one embodiment, a power interface is provided with a first conductive busbar of a first junction box. A second conductive busbar of a second junction box is provided. A conductive fastener assembly connects the first busbar and the second busbar. A power feed is connected to the fastener assembly to power the first busbar and the second busbar to consequently power the first junction box and the second junction box.
According to at least one embodiment, a junction box assembly is provided with a conductive boss having a first contact surface and a second contact surface spaced apart from the first contact surface. A pair of threaded conductive studs each extends from one of the contact surfaces. A housing is overmolded onto the boss so that the first contact surface, the second contact surface, and the pair of studs are exposed. A printed circuit board (PCB) is oriented in the housing. A busbar is oriented in the housing in electrical communication with the PCB. The busbar has a conductive tab with an aperture formed therethrough. One of the pair of studs is received within the aperture and the contact tab is in electrical communication with one of the first contact surface and the second contact surface.
According to at least one embodiment, a power interface is provided with a conductive boss having a first contact surface and a second contact surface spaced apart from the first contact surface. A pair of threaded conductive studs each extends from one of the contact surfaces. A first housing is overmolded onto the boss so that the first contact surface, the second contact surface, and the pair of studs are exposed. A first PCB is oriented in the first housing. A first busbar is oriented in the first housing in electrical communication with the first PCB. The first busbar has a conductive tab with an aperture formed therethrough. One of the pair of studs is received within the aperture and the contact tab is in electrical communication with one of the first contact surface and the second contact surface. A second housing is provided with a second PCB oriented in the second housing. A second busbar is oriented in the second housing in electrical communication with the second PCB. The second busbar has a conductive tab extending out of the second housing with an aperture formed therethrough. The stud is received within the aperture in the second busbar conductive tab and the second busbar conductive tab is in electrical communication with the first busbar conductive tab. A power feed eyelet is connected to one of the pair of studs in contact with one of the contact surfaces to power the first busbar and the second busbar to consequently power the first junction box and the second junction box.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
With reference to
The main junction box assembly 14 includes a main housing 18, which retains a main printed circuit board (PCB) 20. The PCB 20 may include a plurality of electrical components, such as female terminals 22 for receipt of fuses, or the like. The housing 18 also includes a main conductive busbar 24 that is oriented primarily in the housing 18. The main busbar 24 is in electrical communication with the PCB 20 for conveying power to the PCB 20.
The housing 18 includes a fastener region 26 for supporting a fastener assembly 28. The fastener assembly 28 includes a conductive boss 30 that is secured within the housing 18 as illustrated in
The main busbar 24 includes a contact tab 44 with an aperture 46 formed therein. The contact tab 44 extends out of the housing 18; and engages the contact surface of the end 36 of the boss 30. The aperture 46 is placed over the threaded stud 40 to retain the main busbar 24 relative to the fastener assembly 28.
Referring now to
A threaded nut 60 is provided on the stud 40 in engagement with the secondary busbar contact tab 54 for pressing the secondary busbar contact tab 54 against the main busbar contact tab 44, and consequently pressing the main busbar contact tab 44 against shoulder 36 of the boss 30. The threaded nut 60 retains the main busbar 24 and the secondary busbar 52 in electrical connection with the fastener assembly 28 to ensure electrical connection therebetween.
The power feed wire assembly 12 includes a power wire 62 connected to an eyelet 64. The eyelet 64 is secured to the second threaded stud 42 by a second threaded nut 66 thereby retaining the eyelet in electrical communication with the second shoulder 38 of the boss 30. By utilizing one fastener assembly 28 for two junction box assemblies 14, 16, only one power feed wire assembly 12 is employed.
Thus, duplication of power feed wire assemblies 12 and fastener assemblies 28 is avoided thereby reducing costs in additional components, while reducing the overall size and weight. The removal of a redundant connection increases efficiencies of the connection while also simplifying manufacturing processes.
While various embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application claims the benefit of U.S. provisional Application No. 61/657,191 filed Jun. 8, 2012, the disclosure of which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5639268 | Julian et al. | Jun 1997 | A |
6325640 | Kasai | Dec 2001 | B1 |
6679708 | Depp et al. | Jan 2004 | B1 |
6719572 | Seo et al. | Apr 2004 | B2 |
7347733 | Murakami | Mar 2008 | B2 |
7549872 | Akahori et al. | Jun 2009 | B2 |
7614886 | Choi | Nov 2009 | B2 |
7670184 | Akahori et al. | Mar 2010 | B2 |
7850462 | Nakagawa | Dec 2010 | B2 |
8350151 | Asao | Jan 2013 | B2 |
20080110662 | Akahori et al. | May 2008 | A1 |
20100051311 | Nakagawa | Mar 2010 | A1 |
20110269320 | Roettger et al. | Nov 2011 | A1 |
20130037317 | Iwata et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
9050836 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20130330982 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61657191 | Jun 2012 | US |