Electrical machine having a flux-concentrating permanent magnet rotor and reduction of the axial leakage flux

Information

  • Patent Grant
  • 10135309
  • Patent Number
    10,135,309
  • Date Filed
    Tuesday, August 27, 2013
    11 years ago
  • Date Issued
    Tuesday, November 20, 2018
    6 years ago
Abstract
A rotor having a number of tangentially magnetized permanent magnets tangentially evenly distributed and arranged both in the center region and in the outer regions in the axial direction is disclosed. Flux-guiding elements between the permanent magnets guide the magnetic fields of the permanent magnets radially toward the center region of the stator. The flux-guiding elements comprise a plurality of sheets stacked on one another in the axial direction. The sheets in the outer regions are smaller than the sheets in the center region. The sheets arranged in the outer regions are surrounded on their radially outside end by a retaining apparatus. Form-fitting elements transmit centrifugal forces acting on the sheets arranged in the center region are transmitted to the sheets arranged in the outer regions.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is the U.S. National Stage of International Application No. PCT/EP2013/067660, filed Aug. 27, 2013, which designated the United States and has been published as International Publication No. WO 2014/169974 A1 and which claims the priority of European Patent Application, Serial No. 13164073.2, filed Apr. 17, 2013, pursuant to 35 U.S.C. 119(a)-(d).


BACKGROUND OF THE INVENTION

The present invention relates to an electrical machine,

    • wherein the electrical machine has a stator and a rotor arranged on a rotor shaft,
    • wherein the rotor shaft is rotatably supported in bearings, so that the rotor can be rotated about an axis of rotation,
    • wherein the stator extends over a stator region viewed in the direction of the axis of rotation,
    • wherein the rotor has a central region and outer regions adjacent to the central region on both sides, viewed in the direction of the axis of rotation.


An electrical machine of this type is generally known. In particular an electrical machine of this type is known, in which

    • the rotor bears a number of tangentially magnetized permanent magnets in respect of the axis of rotation, which are tangentially evenly distributed viewed around the axis of rotation,
    • wherein flux guiding elements are arranged tangentially between the permanent magnets viewed around the axis of rotation, by means of which flux guiding elements magnetic fields coming from the permanent magnets are directed radially toward the stator viewed in respect of the axis of rotation,
    • wherein the flux guiding elements consist of a plurality of sheets stacked one on the other viewed in the direction of the axis of rotation.


A relatively high power density can be achieved with electrical machines of the type described last.


SUMMARY OF THE INVENTION

The present invention is based on the object to create an electrical machine, in which the power density can be increased still further.


The object is achieved in accordance with the invention by an electrical machine which includes a stator and a rotor arranged on a rotor shaft,

    • wherein the rotor shaft is rotatably supported in bearings, so that the rotor can be rotated about an axis of rotation,
    • wherein the stator extends over a stator region viewed in the direction of the axis of rotation,
    • wherein the rotor has a central region and outer regions adjacent to the central region (7a) on both sides viewed in the direction of the axis of rotation,
    • wherein the central region corresponds to the stator region viewed in the direction of the axis of rotation,
    • wherein the permanent magnets are arranged both in the central region and also in the outer regions of the rotor viewed in the direction of the axis of rotation,
    • wherein the magnetic fields coming from the permanent magnets are directed into the central region by means of the flux guiding elements viewed in parallel to the axis of rotation,
    • wherein the sheets in the outer regions of the rotor are smaller than the sheets in the central region of the rotor,
    • wherein the sheets arranged in the outer regions of the rotor are surrounded externally by a holding device viewed radially in respect of the axis of rotation and
    • wherein the rotor has form-fitting elements, by means of which centrifugal forces acting on the sheets arranged in the central region of the rotor are transferred into the sheets arranged in the outer regions of the rotor.


Advantageous embodiments of the electrical machine form the subject matter of the dependent claims.


The form-fitting elements can be embodied as required. By way of example, the form-fitting elements can comprise local form-fitting elements which have been introduced into the sheets, by means of which centrifugal forces are transferred in each case between directly adjacent sheets. One possible embodiment of local form-fitting elements of this type are punch-bundled tappets which have been introduced into the sheets and herewith corresponding cutouts which have been introduced into the sheets.


Alternatively or in addition to the local form-fitting elements, the form-fitting elements can comprise rods, which, viewed in the direction of the axis of rotation, extend over the entire rotor and are guided through corresponding cutouts in the sheets.


If the rods are present, viewed radially in respect of the axis of rotation, they preferably have a larger extension than viewed tangentially in respect of the axis of rotation. Viewed in particular in a plane orthogonal to the axis of rotation, they can have a rectangular cross-section. In order to achieve as even a force distribution as possible, a first elastic intermediate layer is arranged between the rods and the sheets.


Alternatively or in addition to the first elastic intermediate layer, a second elastic intermediate layer can be arranged between the sheets and the permanent magnets.


Viewed radially in respect of the axis of rotation, the sheets preferably have internally an inner section and externally an outer section, wherein the inner sections are embodied in the manner of a circular sector viewed in a plane orthogonal to the axis of rotation, and the outer sections are embodied in the manner of a circular ring sector viewed in the plane orthogonal to the axis of rotation. It is particularly preferable in this case that viewed tangentially about the axis of rotation-, the inner sections cover an inner angle and outer sections cover an outer angle and the outer angle is greater than the inner angle.


The holding devices can in particular be embodied as annular sleeves or as pre-stressed bandages.


A stator winding system is usually arranged in the stator. The stator winding system has winding heads, which, viewed in the direction of the axis of rotation, project on both sides over the stator. The winding heads have a longitudinal extension viewed in the direction of the axis of rotation. The longitudinal extension of the winding heads preferably corresponds to a longitudinal extension of the outer regions of the rotor.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-described properties, features and advantages of this invention as well as the manner in which they are achieved will become clearer and more clearly understood in conjunction with the following description of the exemplary embodiments, which are explained in more detail in conjunction with the drawings, in which, shown in a schematic representation:



FIGS. 1 and 2 show longitudinal sections through an electrical machine,



FIGS. 3 and 4 show cross-sections through the rotor of the electrical machine in FIGS. 1 and 2,



FIG. 5 shows one possible embodiment of a sheet,



FIG. 6 shows a longitudinal section through two sheets,



FIG. 7 shows a further possible embodiment of a sheet,



FIG. 8 shows a longitudinal section through a sheet and a rod, and



FIG. 9 shows a longitudinal section through the rotor of an electrical machine.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

According to FIGS. 1 to 4, an electrical machine has a stator 1 and a rotor 2. The rotor 2 is arranged on a rotor shaft 3. The rotor shaft 3 is supported rotatably in bearings 4. The rotor shaft 3 and with it the rotor 2 can as a result be rotated about an axis of rotation 5.


Provided that the terms “axial”, “radial” and “tangential” are used below, they are always related to the axis of rotation 5. “Axial” is a direction parallel to the axis of rotation 5. “Radial” is a direction orthogonal in respect of the axis of rotation 5 toward the axis of rotation 5 or away therefrom. “Tangential” is a direction which is orthogonal both in respect of the axial direction and in respect of the radial direction. Tangential is therefore a direction which is directed in a circular manner about the axis of rotation 5 at a constant radial distance and with a constant axial position.


The stator 1 extends in the axial direction over a stator region 6. A stator winding system 1a is arranged in the stator 1. The stator winding system 1a has winding heads 1b, which viewed in the axial direction project on both sides over the stator 1. The winding heads 1b have a longitudinal extension 11 viewed in the axial direction.


The rotor 2 extends in the axial direction over a rotor region 7. The rotor region 7 has a central region 7a and outer regions 7b in the axial direction. The central region 7a corresponds, viewed in the axial direction, to the stator region 6. The outer regions 7b border the central region 7a on both sides in the axial direction. The central region 7a is therefore arranged between the two outer regions 7b. The outer regions 7b have a longitudinal extension 12. The longitudinal extension 12 of the outer regions 7b preferably corresponds to the longitudinal extension 11 of the winding heads 1b.


The rotor 2 bears a number of permanent magnets 8. The permanent magnets 8 are distributed evenly around the axis of rotation 5 in the tangential direction. They are, as indicated in FIGS. 3 and 4 by arrows 9, magnetized tangentially in respect of the axis of rotation 5. The permanent magnets 8 are (see FIG. 1), viewed in the axial direction, arranged both in the central region 7a and also in the outer regions 7b of the rotor 2. The number of permanent magnets 8 shown in FIGS. 3 and 4 is purely exemplary however.


According to FIGS. 3 and 4, flux guiding elements 10 are arranged between the permanent magnets 8 viewed in the tangential direction. Magnetic fields B coming from the permanent magnets 8 are directed toward the stator 1, viewed in the radial direction, by means of the flux guiding elements 10. Viewed in the axial direction, the magnetic fields B are directed into the central region 7a by means of the flux guiding elements 10.


The flux guiding elements 10 consist, viewed in the axial direction, of a plurality of sheets 11 stacked one on the other. The sheets 11 in the outer regions 7b of the rotor 2 are, as indicated on the one hand in FIG. 1 and on the other hand from a comparison of FIGS. 3 and 4 together, smaller than the sheets 11 in the central region 7a of the rotor 2. The sheets 11 arranged in the outer regions 7b of the rotor 2 are surrounded externally by a holding device 12 viewed in the radial direction. The holding devices 12 can be embodied for instance as annular, pre-stressed sleeves or as pre-stressed bandages.


The rotor 2 has form-fitting elements 13 to 16. By means of the form-fitting elements 13 to 16, centrifugal forces which act on the sheets 11 arranged in the central region 7a of the rotor 2 are transmitted into the sheets 11 arranged in the outer regions 7b of the rotor 2. Possible embodiments of the form-fitting elements 13 to 16 are explained in more detail below in connection with FIGS. 5 to 9.


According to FIGS. 5 and 6, the form-fitting elements 13 to 16 can comprise local form-fitting elements 13, 14 which have been introduced into the sheets 11. Centrifugal forces are transmitted in each case between directly adjacent sheets 11 by means of the local form-fitting elements 13, 14. In particular, the local form-fitting elements 13, 14 according to FIGS. 5 and 6 can be embodied as punch-bundled tappets 13 incorporated in the sheets 11 and herewith corresponding cutouts 14 which have been introduced into the sheets 11. The number and arrangement of the local form-fitting elements 13, 14 shown in FIGS. 5 and 6 is purely exemplary.


The local form-fitting elements 13, 14 were explained above in connection with sheets 11, which are arranged in the central region 7a of the rotor 2. The same embodiments are generally also realized in the sheets 11 which are arranged in the outer regions 7b of the rotor 2.


According to FIGS. 7 to 9, globally acting form-fitting elements 15, 16 may also exist. In this case, the form-fitting elements 13 to 16 comprise rods 15 as globally acting form-fitting elements 15, 16. The rods 15 extend in the axial direction over the entire rotor 2. They are guided through corresponding cutouts 16 in the sheets 11.


The globally acting form-fitting elements 15, 16 are, according to FIGS. 7 to 9, present as an alternative to the local form-fitting elements 13, 14. It is nevertheless likewise possible to realize the embodiments in FIGS. 5 and 6 on the one hand and those in FIGS. 7 to 9 on the other hand.


The rods 15 can be embodied as round rods or as square rods. In this case, the rods 15 in the radial direction have the same extension as in the tangential direction. However, the rods 15 in the radial direction preferably have a larger extension than in the tangential direction. In particular, the rods 15 viewed in a radial-tangential plane can have a rectangular cross-section, wherein the larger side length of the rectangle is preferably oriented radially.


If the rods 15 and the cutouts 16 are present, an elastic intermediate layer 17 can be present between the rods 15 and the sheets 11 in order to balance out tolerances and equalize a contact pressure, said elastic intermediate layer 17 being referred to below as a first elastic intermediate layer 17. Irrespective of whether the rods 15 and the cutouts 16 are present, and irrespective of whether if necessary the first elastic intermediate layer 17 is present, a further elastic intermediate layer 18 can be present in accordance with FIGS. 5 and 7 between the sheets 11 and the permanent magnets 8, in order to differentiate between the first elastic intermediate layer 17 and the second elastic intermediate layer 18.


The sheets 11 have—see FIGS. 3, 4, 5 and 7—internally an inner section 19 and externally an outer section 20 in the radial direction. The inner sections 19 are embodied in the manner of a circular sector viewed in a radial-tangential plane. They cover an inner angle α in the tangential direction. The outer sections 20 are embodied in the manner of a circular ring sector in the radial-tangential plane. They cover an outer angle β in the tangential direction. The outer angle β is greater than the inner angle α.


The inventive electrical machine has a number of advantages. In particular, an electrical machine can be constructed, which has a rotor 2 excited by means of permanent magnets 8, in which the magnetic flux is concentrated both in the axial direction and also in the tangential direction. Nevertheless, a very small air gap can be realized between the rotor 2 and the stator 1, because a holding device is not required in the air gap between the rotor 2 and the stator 1, in other words in the central region 7a of the rotor 2.


Although the invention has been illustrated and described in detail by the preferred exemplary embodiment, the invention is not restricted by the disclosed examples and other variations can be derived herefrom by the person skilled in the art without departing from the scope of protection of the invention.

Claims
  • 1. An electrical machine, comprising: a stator;a rotor mounted for rotation relative to the stator about an axis of rotation, said rotor having a central region and outer regions adjacent to both sides of the central region, when viewed in a direction of the axis of rotation, with the stator extending over a stator region, when viewed in the direction of the axis of rotation;a plurality of permanent magnets on the rotor that are tangentially magnetized relative to the axis of rotation and tangentially evenly distributed in both the central region and outer regions of the rotor, when viewed in the direction of the axis of rotation, the magnets each having a radial length;flux guiding elements arranged tangentially between the permanent magnets so that magnetic fields from the permanent magnets are directed radially toward the stator, and in parallel into the central region of the rotor, viewed in the direction of the axis of rotation, said flux guiding elements having a plurality of sheets stacked on one another, with sheets in the outer regions of the rotor being smaller than sheets in the central region of the rotor,wherein the sheets include an internal inner section and an external outer section, when viewed radially in the direction of the axis of rotation, with the inner section forming a circular sector, when viewed in a direction of a plane orthogonal to the axis of rotation, and with the outer section forming a circular ring sector, when viewed in the direction of a plane orthogonal to the axis of rotation,wherein the internal inner section covers an inner angle and the external outer section covers an outer angle, when viewed in a direction of a tangent of the axis of rotation, said outer angle being greater than said inner angle;a holding device externally surrounding the sheets in the outer regions of the rotor, viewed radially in the direction of the axis of rotation;form-fitting elements transferring centrifugal forces acting on the sheets in the central region of the rotor into the sheets arranged in the outer regions of the rotor; anda second elastic intermediate layer extending across an entire sheet-facing surface area of the magnet on only the internal inner section, so as to extend the radial length of the magnet between the sheets and the permanent magnets.
  • 2. The electrical machine of claim 1, wherein the form-fitting elements comprise local form-fitting elements among the sheets, said form-fitting elements being configured to transfer centrifugal forces between directly adjacent sheets.
  • 3. The electrical machine of claim 2, wherein the local form-fitting elements comprise punch-bundled tappets introduced into the sheets, and cutouts introduced into the sheets, said cutouts corresponding to the tappets.
  • 4. The electrical machine of claim 3, wherein the form-fitting elements comprise rods sized to extend over the rotor in its entirety, viewed in the direction of the axis of rotation, and guided through corresponding cutouts in the sheets.
  • 5. The electrical machine of claim 4, wherein the rods have a larger extension when viewed radially in the direction of the axis of rotation than when viewed in a direction of a tangent of the axis of rotation.
  • 6. The electrical machine of claim 4, wherein the rods have a rectangular cross-section when viewed in a direction of a plane orthogonal to the axis of rotation.
  • 7. The electrical machine of claim 4, further comprising a first elastic intermediate layer between the rods and the sheets.
  • 8. The electrical machine of claim 1, wherein the holding device is constructed in the form of an annular sleeve or pre-stressed bandage.
  • 9. The electrical machine of claim 1, wherein the stator includes a stator winding system having winding heads projecting out from the stator on both sides, said winding heads having a longitudinal extension that corresponds to a longitudinal extension of the outer regions of the rotor, when viewed in the direction of the axis of rotation.
Priority Claims (1)
Number Date Country Kind
13164073 Apr 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/067660 8/27/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/169974 10/23/2014 WO A
US Referenced Citations (96)
Number Name Date Kind
2504825 Meyer Apr 1950 A
5829120 Uchida Nov 1998 A
6483221 Pawellek et al. Nov 2002 B1
6628031 Vollmer Sep 2003 B2
6768238 Knauff et al. Jul 2004 B2
6812612 Schunk et al. Nov 2004 B2
6858965 Mueller et al. Feb 2005 B2
6885187 Duenisch et al. Apr 2005 B2
6943467 Potoradi et al. Sep 2005 B2
7141905 Vollmer Nov 2006 B2
7285883 Bott et al. Oct 2007 B2
7564158 Huth et al. Jul 2009 B2
7705507 Vollmer Apr 2010 B2
7709984 Braun et al. May 2010 B2
7732967 Schunk et al. Jun 2010 B2
7755315 Bott et al. Jul 2010 B2
7777373 Bott et al. Aug 2010 B2
7859160 Vollmer Dec 2010 B2
7915777 Vollmer Mar 2011 B2
7977826 Vollmer et al. Jul 2011 B2
8026640 Bott et al. Sep 2011 B2
8035371 Budde et al. Oct 2011 B2
8063517 Bott et al. Nov 2011 B2
8115360 Vollmer Feb 2012 B2
8134273 Vollmer et al. Mar 2012 B2
8227951 Grossmann et al. Jul 2012 B2
8283815 Vollmer Oct 2012 B2
8378541 Vollmer Feb 2013 B2
8853894 Vollmer et al. Oct 2014 B2
20030011267 Vollmer Jan 2003 A1
20030094940 Duenisch et al. May 2003 A1
20030173853 Knauff et al. Sep 2003 A1
20040075359 Mueller et al. Apr 2004 A1
20040084989 Schunk et al. May 2004 A1
20040155539 Potoradi et al. Aug 2004 A1
20040261553 Bott et al. Dec 2004 A1
20050231060 Vollmer Oct 2005 A1
20060219880 Braun et al. Oct 2006 A1
20070035193 Huth et al. Feb 2007 A1
20070040466 Vollmer Feb 2007 A1
20070114861 Bott et al. May 2007 A1
20070257566 Vollmer Nov 2007 A1
20070257575 Vollmer Nov 2007 A1
20070290569 Bode Dec 2007 A1
20080073985 Bott et al. Mar 2008 A1
20080164777 Braun et al. Jul 2008 A1
20080169718 Bott et al. Jul 2008 A1
20080185931 Platen et al. Aug 2008 A1
20080197741 Schunk et al. Aug 2008 A1
20080197742 Vollmer Aug 2008 A1
20080289440 Denk et al. Nov 2008 A1
20080315704 Vollmer Dec 2008 A1
20090009114 Schunk et al. Jan 2009 A1
20090015080 Vollmer et al. Jan 2009 A1
20090026867 Haruno et al. Jan 2009 A1
20090039713 Bott et al. Feb 2009 A1
20090072634 Vollmer Mar 2009 A1
20090152959 Vollmer Jun 2009 A1
20090152976 Bott et al. Jun 2009 A1
20090160283 Bott et al. Jun 2009 A1
20090184602 Braun et al. Jul 2009 A1
20090206686 Vollmer Aug 2009 A1
20090212644 Bott et al. Aug 2009 A1
20090218904 Vollmer Sep 2009 A1
20090251013 Vollmer et al. Oct 2009 A1
20090295236 Bott et al. Dec 2009 A1
20090295251 Vollmer et al. Dec 2009 A1
20090302832 Budde et al. Dec 2009 A1
20090315424 Vollmer Dec 2009 A1
20090322174 Grossmann et al. Dec 2009 A1
20100000830 Budde et al. Jan 2010 A1
20100013332 Vollmer Jan 2010 A1
20100013333 Vollmer Jan 2010 A1
20100013341 Vollmer Jan 2010 A1
20100052466 Vollmer et al. Mar 2010 A1
20100133940 Grossmann et al. Jun 2010 A1
20100231085 Ifrim Sep 2010 A1
20100264770 Braun et al. Oct 2010 A1
20110006617 Budde et al. Jan 2011 A1
20110074242 Singhal Mar 2011 A1
20120025654 Bach et al. Feb 2012 A1
20120038228 Vollmer Feb 2012 A1
20120146435 Bott et al. Jun 2012 A1
20120181880 Zhao et al. Jul 2012 A1
20130127264 Vollmer et al. May 2013 A1
20130147285 Vollmer et al. Jun 2013 A1
20130241324 Mader et al. Sep 2013 A1
20130241335 Vollmer Sep 2013 A1
20130241338 Mader et al. Sep 2013 A1
20130249340 Potoradi Sep 2013 A1
20140015356 Chamberlin Jan 2014 A1
20140028135 Vollmer Jan 2014 A1
20140042857 Mader et al. Feb 2014 A1
20140070655 Schneider et al. Mar 2014 A1
20140097782 Vollmer Apr 2014 A1
20140102674 Manz Apr 2014 A1
Foreign Referenced Citations (10)
Number Date Country
101083408 Dec 2007 CN
699236 Nov 1940 DE
689 06 910 Nov 1993 DE
102007012822 May 2008 DE
10 2012 107 610 Feb 2013 DE
2 519 483 Jul 1983 FR
2519483 Jul 1983 FR
H0236741 Feb 1990 JP
2010081675 Apr 2010 JP
2012186901 Sep 2012 JP
Non-Patent Literature Citations (6)
Entry
Machine Translation, Teichmann Bruno, DE 699236 C, Nov. 1940.
Machine Translation, Boudrant Antoine, FR 2519483 A1, Jul. 1983.
Machine Translation, Maruyama, JP 2012186901 A, Sep. 2012.
USPTO Translation, Teichmann Bruno , DE 699236, Nov. 1940.
Machine Translation, Taeubner, DE 102007012822 A1, May 2008.
International Search Report issued by the European Patent Office in International Application PCT/EP2013/067660.
Related Publications (1)
Number Date Country
20160079815 A1 Mar 2016 US