All publications, patents and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates generally to medical methods and systems for treatment of body lumens. More particularly, the invention is directed determining physiologic characteristics of body lumens such as the esophagus in preparation for medical treatment such as ablational therapy.
The human body has a number of internal body lumens, as in the gastrointestinal tract, with an inner lining or layer that can be susceptible to disease. As an example, gastroesophageal reflux disease (GERD), which involves inappropriate relaxation of the lower esophageal sphincter, manifests with symptoms of heartburn and regurgitation of gastric and intestinal contents. Patients with severe forms of gastroesophageal reflux disease can sometimes develop secondary damage of the esophagus due to the interaction of gastric or intestinal contents with esophageal cells not designed to experience such interaction.
The esophagus is composed of three primary tissue layers; a superficial mucosal layer lined by squamous epithelial cells, a middle submucosal layer and a deeper muscle layer. When gastroesophageal reflux occurs, the superfacial squamous epithelial cells are exposed to gastric acid, along with intestinal bile acids and enzymes. This exposure may be tolerated, but in some cases can lead to a condition known's as Barrett's esophagus, in which damage and alteration of the squamous cells causes them to change into taller, specialized columnar epithelial cells. Barrett's esophagus has important clinical consequences, as the columnar cells can become dysplastic, and then further progress to adenocarcinoma of the esophagus.
Accordingly, attention has been focused on identifying and removing this abnormal Barrett's columnar epithelium in order to mitigate more severe implications for the patient. Devices and methods for treating abnormal body tissue by application of various forms of energy to such tissue have been described, such as radio frequency ablation. However, precise control of the depth of penetration of the energy means, these methods and devices is critical to the success of such ablational therapy. Uncontrolled energy application can penetrate too deeply into the esophageal wall, beyond the mucosa and submucosal layers, into the muscularis extema, potentially causing esophageal perforation, stricture or bleeding. Among the factors and information needed for administration of the correct amount of treatment energy to the tissue is knowledge of the size of the esophagus and area to be treated.
Medical procedures for treating Barrett's esophagus typically involve deployment of an expandable catheter inside the esophagus. Expandable catheters are preferred because the profile of the catheter is ideally as small as possible to allow for ease of delivery, while treatment of the esophagus is most efficiently performed when the catheter is at or slightly larger than the diameter of the esophageal wall. Proper sizing and/or pressurization of the delivery device is desirable to prevent over-distension of the organ, which can result in harm to the organ, or under-expansion of the catheter, which can results in incomplete treatment. Accordingly, accurate and simple measurement of the size of the lumen and control of the pressure of the catheter on the lumen surface promotes the proper engagement and delivery of energy to the luminal wall so that a uniform and controlled depth of treatment can be administered.
Ablational devices typically need to make an appropriate and reproducible therapeutic contact between an ablational surface and the surface of a tissue area targeted for ablation. A number of ablational devices and methods for using them have been described in US patents and applications (U.S. Pat. No. 6,551,310 of Ganz issued on Apr. 22, 2003, application Ser. No. 10/370,645 of Ganz published as US2003/0158550 on Aug. 21, 2003, application Ser. No. 10/426,923 of Stern published as US2004/0087936 on May 6, 2004, application Ser. No. 10/754,452 of Jackson published as US2004/0215235 on Oct. 28, 2004, application Ser. No. 10/754,445 of Ganz published as US2004/0215296 on Oct. 28, 2004, application Ser. No. 11/244,385 of Jackson published as US2006/0095032 on May 4, 2006, and application Ser. No. 11/633,938 of Jackson published as US2007/0100333 on May 3, 2007) that make use of an expandable balloon to exert pressure from behind the ablational surface to press it against the target tissue area. Inasmuch as the inner diameter of luminal organs, such as gastrointestinal organs, vary in size, the extent or volume to which a balloon is inflated to achieve therapeutic contact will vary accordingly.
One currently available approach to creating consistency in the pressure that supports an appropriatec or desirable level of therapeutic contact is to pre-test the target ablation site in order to know what inflated air volume is appropriate. Accordingly, measurements may be taken while pressurizing an oversized balloon to a specific pressure (for example, 4 psig) and then used to estimate the diameter of the esophagus, as described in U.S. patent application Ser. No. 11/244,385 of Jackson, published as US 2006/0095032. While this technique works well under ideal circumstances, in practical circumstances, leaks in the system can cause the production of inaccurate diameter estimates. Preventing leaks has been shown to be difficult as there are various locations in the system where a leak may occur.
Therefore, there is a need for alternative means of measuring the diameter or circumference of a body lumen in anticipation of a treatment, such as an ablation. This disclosure describes alternative devices and methods of accomplishing this task.
The present invention comprises methods and systems for sizing a body lumen, such as the esophagus. The sizing of a body lumen can provide information that is useful for determining values for various parameters of therapeutic treatments as exemplified by ablation treatment, such as normalizing the energy density delivered from an ablating surface to a tissue surface. Although the following description focuses on exemplary embodiments configured for treatment of the esophagus, other embodiments may be used to treat any other suitable lumen in the body. Further, although ablational treatment is described as an exemplary therapeutic treatment, the invention may be applied to any form of therapeutic treatment in which it is beneficial to normalize the delivery of treatment to the size of a lumen being treated. In particular, the methods and systems of the present invention may be used whenever accurate measurement of a body lumen or uniform delivery of energy is desired to treat a controlled depth of tissue in a lumen or cavity of the body, especially where such body structures may vary in size.
Embodiments of the invention relate to methods of measuring the size of a body lumen, as for example an inner circumference, devices for measuring such a lumen, and methods for ablating targeted tissue in a body lumen that make use of the size measurement to control the delivery of ablative energy. The inner circumference may be considered the parameter most directly measured by the method, as sensing elements are arranged linearly along a surface aligned with the circumference of the lumen, but such measurements may also be related directly to diameter and cross-sectional surface area of the lumen, as such values may be beneficial in some applications. Further, by a calculation that includes a longitudinal measure of a portion of the lumen, values may be calculated for a luminal surface area, as may be treated, for example, by an ablational device. Still further, if treatment is being directed to a fractional portion of the circumference of a lumen, those surface area values can be calculated as well.
Measuring the size of a body lumen, as exemplified by a measure of the inner circumference of a body lumen includes expanding the size of an operative element within the lumen, the operative element having sensing circuitry with resistivity that varies according to the size of the operative element, varying the sensing circuitry in accordance with the expansion of the operative element, measuring the resistivity of the sensing circuitry, determining the size of the lumen based on the measuring step. This summary will focus on resistivity as the exemplary feature of the circuitry that varies in accordance with the size of the operative element of the lumen it occupies, but all that which is said with regard to resistivity may be applied to inductance as well. Embodiments that make use of inductance will, however, be briefly summarized further below.
Varying the size of the operative element, for example by expanding it, may be performed by expanding an inflatable balloon within the operative element, and may include expanding the size of the operating element to exert a predetermined pressure on the lumen. The expansion medium may be either a liquid or a gas. In some embodiments, the pressure is typically between about 1 psig and about 7 psig; in some embodiments it is between about 3 psig and about 5 psig, and in particular embodiments the pressure is about 4 psig. In some embodiments of the method, varying the degree of expansion of the operative element includes automatically inflating and/or deflating a balloon. These pressures have been determined to be appropriate for effecting a coaptive ablation of gastrointestinal luminal walls. In embodiments of the invention that are directed toward other target sites or directed toward other types of treatment with other objectives, other pressures may be beneficial and are included as embodiments of the method.
In some embodiments of the method, varying or expanding the size of the operative element includes expanding the size of the operative element to achieve a predetermined resistivity of the size-sensing circuitry included within the operative element. In some embodiments, the circuitry includes size-sensing elements that include points of electrical contact. In other embodiments, the circuitry may include size-sensing elements that have any one or more of brush elements, optical sensors, magnetic contact points, or electro-mechanical contact points.
In some embodiments of the method, varying the size-sensing circuitry includes or causes stretching a conductive elastomer that is included within the circuit, the conductive elastomer being wrapped around at least a portion of the expandable operative element, the resistivity of the conductive elastomer increasing as it stretches in accordance with the expansion of the size of the operative element.
In other embodiments of the method, expanding the operative element includes decreasing an area of overlap between two longitudinal edges of a circumferentially-expandable energy delivery support having two longitudinal edges that overlap each other, the amount of overlap between the two edges decreasing in accordance with the size of the operative element expanding. In these embodiments, decreasing the area of overlap between the two edges of the energy delivery support varies the sensing circuitry, such circuitry being formed by sensing elements that arranged on both edges of the energy delivery support in the region of overlap, the resistance of the formed circuitry varying in accordance with the amount of the area of overlap.
Some embodiments of the method may include more than one approach to sizing the lumen by varying the sensing circuitry as have been summarized. For example, some embodiments may make use both of size-sensing circuitry that includes a conductive elastomer as well as circuitry that is responsive to changes in the amount of overlap of two ablational element delivery support edges.
Embodiments of the invention include devices for measuring the size of a body lumen, as for example the circumference of the body lumen as reflected in the circumference of an expandable operative element that is expanded within the lumen. Such devices include an expandable operative element having a circuitry whose resistivity (or inductance) varies according to the size, the circumference, for example, of the operative element. Some embodiments of the device include an inflatable balloon that is substantially responsible for expanding the operative element, but other embodiments may include operative elements that expand by mechanical means that are equally capable of exerting pressure against a lumen.
In some embodiments of the device, the operative element further includes one or more energy delivery elements, as for example, radiofrequency delivery elements to effect an ablation treatment on target tissue. These energy delivery elements may include a radiofrequency electrode, an array of electrodes, or solid-state circuitry. In various embodiments, the ablative energy elements may be arranged directly on the expandable balloon, or arranged on an electrode support that is itself engaged around the balloon. In other embodiments, alternative forms of energy and appropriate delivery elements may be included, such as microwave energy emanating from an antenna, light energy emanating from photonic elements, thermal energy transmitted conductively from heated ablational structure surfaces or as conveyed directly to tissue by heated gas or liquid, or a heat-sink draw of energy, as provided by cryonic cooling of ablational structure surfaces, or as applied by direct cold gas or fluid contact with tissue.
In some embodiments of the device, the circuitry includes a portion of a band of conductive elastomer wrapped around a circumferentially expandable portion of the operative element, such as around an inflatable balloon, such that when the balloon is contracted, the length of the conductive elastomer band is contracted, and when the balloon is expanded, the length of the conductive elastomeric band is expanded. In other embodiments, the device includes an ablational energy delivery element support arranged around the balloon, and the band of conductive elastomer is wrapped around the support. The conductive elastomeric portion of size sensing circuits of these embodiments is configured to relate size-sensing data by virtue of the electrical properties such as resistivity or inductance that vary according to the degree of contraction or stretch of the conductive elastomer.
Embodiments of circuitry that include a conductive elastomer within a size-sensing circuit thus depend on the particular construction of the device. For example, the conductive elastomer may be wrapped around an expandable member included within the operative element, such as an inflatable balloon. In some embodiments, treatment delivery elements such as ablation energy delivery elements may be arranged directly on the balloon, and in other embodiments, an intervening ablation energy delivery element support carrying the energy delivery elements may be wrapped around the balloon. In all these embodiments, a conductive elastomer may be wrapped around any portion of the operative element that expands in a manner that accords with the circumferential expansion of the operative device as a whole. In still other embodiments, the conductive elastomer may be applied to an internal surface of the balloon, or the internal surface of any portion of the operative element that expands in a manner that accords with the circumferential expansion of the operative device as a whole.
In other embodiments of the device, as noted above, the device includes an ablational energy delivery element support arranged around an inflatable balloon. The support of these device embodiments has a first edge and a second edge that mutually overlap each other, and the support is circumferentially expandable by the balloon such that when the balloon is contracted an area of mutual overlap of the two edges is inversely related to the amount of expansion of the balloon. For example, when the balloon is contracted or not expanded, the area of mutual overlap is relatively large, and when the balloon is expanded, the area of mutual overlap of the two edges is relatively small. In these embodiments, the circuitry includes size sensing elements on both edges of the overlapping support; such elements are configured to make an electrical connection across the area of mutual overlap to form a circuit with a particular resistivity, and the elements are also configured such that the particular circuit-forming electrical connection between sensing elements varies according to the amount of mutual overlap of the two edges.
In these device embodiments, configuration of the sensing elements and their pattern or distribution between the two longitudinal edges of an ablational energy delivery support may take various forms; three exemplary embodiments will be summarized. In some embodiments of the device, the first edge includes a single size-sensing element and the second edge includes a plurality of spaced-apart size-sensing elements, the particular element among the plurality of elements on the second edge that makes a connection to the element on the first edge varies according the amount of mutual overlap of the two edges, and the resistivity of circuit thus formed varies according to which of the elements on the second edge is included in the circuit. In other embodiments of the device, the first edge includes a single sensing element and the second edge includes a plurality of closely-spaced sensing elements, the elements configured such that the element on the first edge can make a connection with one of the plurality of the elements on the second edge or with two adjacent elements, and the resistivity of circuit formed varies according to which one or which two of the elements on the second edge are included in the circuit. In still other embodiments of the device, the first edge includes a single sensing element and the second edge includes an elongated sensing element; the elements are configured such that the single element on the first edge forms a circuit by making contact with the elongated element on the second edge at a point that varies along its length, thereby creating a circuit of varying length, and the resistivity of the circuit varies according to the length of the element on the second edge that is included in the circuit. All three of these approaches provide data from the size-sensing elements that relates to the size of the operative element in real time.
Embodiments of the invention further include methods for ablating target tissue in a body lumen. These methods basically include sizing steps as have been summarized that are coupled with the delivery of ablation energy at a level that is normalized per the sizing data provided by the sizing steps. The method includes inserting an expandable operative element into the lumen, the operative element having sensing circuitry with resistivity that varies according to the size of the operative element, expanding the operative element to contact the target tissue at a predetermined pressure, varying the sensing circuitry in accordance with the expansion of the operative element, measuring the resistivity of the sensing circuitry, determining the size of the lumen based on the measuring step, and controlling the delivery of energy to the operative element according to the size of the lumen.
Controlling delivery of energy may manifest or be expressed in terms of delivery of energy to the operative element, or in terms of delivery of energy from the operative element to the tissue. Further, ablation may be controlled in terms of energy, power, or power density as it is normalized to target tissue surface area. Thus, embodiments of the method make may use of an operative element that includes an expandable balloon for expanding the operative element, an ablational energy delivery surface for ablating tissue, and circuitry with a variable resistivity for measuring the circumference of the operative element.
In some embodiments of the method, controlling delivery of energy includes delivering energy in proportion to the surface area of the targeted tissue with which the operative element is in contact. In various embodiments of the method, controlling delivery of energy includes controlling delivery of energy from the operative element into the tissue, and more specifically, may include controlling the depth to which tissue is ablated.
In various embodiments of the method, controlling delivery of energy includes controlling an amount of power delivered to the tissue over time, and more specifically may include normalizing power delivered to the tissue over time. In various embodiments of the method, controlling delivery of energy includes controlling an amount of energy delivered to the tissue over time, and may include controlling delivered energy density. In other embodiments of the method, controlling delivery of energy includes monitoring and controlling tissue impedance over time, or controlling delivery of energy includes monitoring and controlling tissue temperature over time.
In other embodiments of the method, controlling delivery of energy may further include controlling an amount of power delivered to the tissue by rapidly increasing the power until it reaches a set target value; and in some embodiments it may include the amount of power delivered is performed using a proportional integral derivative controller.
As mentioned above, embodiments of the methods and devices provided here may make use of inductance in place of or in addition to resistivity as an electrical means by which to measure the size, the circumferential length for example, of an expandable operative element, and by inference, the circumference and related dimensions of a lumen in which the device has been place. Thus, for example, the method of measuring the size of a body lumen may include expanding an operative element within the lumen, the operative element having sensing circuitry with inductance that varies according to the size of the operative element, varying the sensing circuitry in accordance with the expansion of the operative element, measuring the inductance of the sensing circuitry, and determining the size of the lumen based on the measuring step.
By way of another example of using inductance as a size-measuring parameter of sensing circuitry, a device for measuring the size of a body lumen may include an expandable operative element including circuitry whose inductance varies according to the size of the operative element. By way of a further example of implementing inductance as an approach to sizing a body lumen in the context of an ablational treatment, a method for ablating targeted tissue in a body lumen may include inserting an operative element into the lumen, the operative element having sensing circuitry with inductance that varies according to the size of the operative element, expanding the operative element to contact the target tissue at a predetermined pressure, varying the sensing circuitry in accordance with the expansion of the operative element, measuring the inductance of the sensing circuitry, determining the size of the lumen based on the measuring step, and controlling the delivery of energy to the operative element according to the size of the lumen.
An object of this invention is to provide high-resolution measurements of the size of a body lumen in real time, when an ablative operational element is positioned in the lumen. The measurement relates most directly to the operative element itself, however, as the operative element fills the lumen upon its expansion, the measurement also reflects the size of the lumen. Body lumens are typically compliant and variable in size according to their contents or moment-to-moment physiological status, as lumens typically have no hard structural or immediately constraining features such as bone. The sizing methods provided herein thus focus on the size of the lumen, as reflected by the size of a space-filling operative element, in the moment as the operative element resides in the lumen, which is typically immediately prior to delivery of a form of therapy, such as ablational energy, from the operative element to the inner surface of the lumen. The fundamental parameter upon which these measurements are based includes resistivity of one or more size-sensing circuits, as the circuits are configured to provide an informative signal that relates to the size of the operational element filling the lumen. The size dimension being measured can relate to any of radius, diameter, or circumference, as all these values are interrelated, however the signal typically relates most directly to circumference. In addition to resistivity, other electrical parameters of the circuits that may be directed to this same object include inductance.
Two basic approaches to the measurement are provided by methods and devices provided herein. One approach relates to the use of a conductive elastomer arranged around the circumference, or a portion of the circumference of the expandable operative element. In this approach, a size-sensing circuit measures the resistivity of the operative element as changes shape, for example, as it expands or stretches. A second approach to measurements of expandable operative elements relates to the use of operative element embodiments that include slidably overlapping leaves as part of the mechanism by which they radially expand. These two approaches are described below, first in terms of the basic operating principles, structures, and methods, and then later, in the context of specific illustrated examples. Still further, these embodiments are described in the larger context of the use of these operative elements on ablation catheters.
In some embodiments of the invention, in accordance with the first approach noted above, an elastic element or elastomer is electrically-conductive, as provided by the use, for example by inclusion of silver-filled silicone. The resistivity of an electrically-conductive elastomer varies as a function of the extent to which the elastomer is stretched; when electrically-conductive elastomer is stretched, it has relatively high resistivity, and when contracted it has relatively low resistivity. Thus, by monitoring the resistivity of an electrically-conductive elastomer wrapped around an expanding balloon, a measure of the size (as exemplified by the circumference) of the balloon is provided. The system may be empirically calibrated prior to use in a body lumen, by testing resistivity as a function of the degree of expansion of the balloon, for example, when collapsed, and when at varying degrees of expansion to a state of the maximal expansion anticipated in normal use. Based on this information and other empirical information, these resistivity values permit estimates of the balloon diameter.
Some alternative embodiments of the invention make use of strain measurements to estimate the size of body lumen, such as an esophagus, prior to performing an ablation treatment. Elastic members such as bands may be wrapped around the edges of an expansion balloon, attached to the surface of the balloon such that when balloon is expanded, the elastic elements stretch to coincide with the expansion of the balloon. This balloon expansion forces the elastic member to elongate, which causes an increase in axial load to the elastic element between the attachment points of the elastic element-balloon interface, such load can be measured as strain which can in turn be related to size.
In alternative embodiments of the invention, instead of using a conductive elastomer, the elastic element may be attached to the operative element (or a portion thereof whose expansion relates to the expansion of the element as a whole) through an intermediary element used for measuring forces or strain. For example, a strain gauge element may be attached directly to the balloon and to the end of the elastic element. As the elastic element stretches it increases the strain on the strain gauge, and such strain data can be used to provide size information, which can be used in turn, to normalize the delivery of treatment to size parameters, such as luminal circumference or surface area.
In accordance with the second approach to device or lumen measurements as noted above, some embodiments of the invention include features that allow the operative element 140 to determine its own size, as its size varies by expanding and contracting within a body lumen, in preparation for the delivery of ablational energy. More specifically, the expansion state or size can be related to absolute dimensions of radius, diameter, or circumference. These values, derived from the operative element and associated size-sensing circuitry, can be related to the real time dimensions of the lumen at the site where the operative element is situated. More particularly, these dimensions, in combination with a longitudinal measure of a portion of a lumen, can all be related to the surface area of mutual contact between an ablational energy delivery element such as an array of radiofrequency electrodes and the target tissue. The object of knowing this surface area dimension is to enable the delivery of a specific power density (Watts/cm2) or energy density (Joules/cm2) to the tissue area that is targeted for ablation. In contrast to the pressure-based sizing balloon-based approach described in U.S. patent application Ser. No. 11/244,385 of Jackson (US Patent Pub. No. 2006/0095032), the approach described herein is based on resistivity or inductance of size-sensing circuits whose resistance varies according to the amount of overlap of electrode support edges.
As shown generally in
In some embodiments of the invention, the size-sensing electrical contact points can be alternatively replaced with optical sensors, magnetics, or other electrical, electromechanical or optical means to determine the amount of electrode overlap. The opposing outward force of the balloon inflating from pressure with the constraining inward force from elastic members provides pressure that keeps the sensing elements in contact. Multiple circuits may be included within the system to provide redundancy, as for example to reduce the likelihood of the tissue or other material preventing physical contact between the two layers, or to provide multiple signals that can be integrated to provide higher resolution measurement. As another approach to protecting from interfering debris, the undersurface of the electrical contact points can include a metallic brush element to improve contact in the presence of tissue or other debris.
In other embodiments of the invention, rather than using resistive feedback, the inductive changes between the electrical circuit formed from contacts on the facing edges of the inner-laying and out-laying overlapping edges of the electrode support may be monitored. Inductance is a function of both the gap between the two circuits (it is desirable to keep as constant as possible) and the amount of overlap of the electrode/circuit areas.
Methods of estimating the surface area of luminal tissue with which electrodes are in contact include using measurements of electrical resistance with respect to tissue, and include the application of related Formulas 1 and 2, as described below.
R=ρ(L/A) Formula 1
Therefore, based on the Formula 1, to develop a predictable correlation between the electrode resistance and contact area, the following information is needed:
Area in contact with tissue=ρ(L/R) Formula 2
Thus, to determine area, measurements of ρ and R are needed. The ρ estimate is obtained by measuring resistivity of the tissue, and an R estimate is obtained by measuring the starting resistance of the exposed circuit that is in contact with the tissue.
Typically, the manufacturing process by which embodiments of the invention are made includes specifications that provide a match between resistivity of size-sensing circuits and circumference of the operative element, such that these relationships are known. Manufacturing processes may also include quality control steps such that the relationship between resistivity of sensing circuits and circumference of the operating element at various levels of expansion is validated. In another approach to providing assurance of the validity of circumference measurements, an end-user can validate such measurements by checking individual operating elements with measurements of tubes of known dimension. By any of these approaches, when practicing the inventive method described herein, the expansion of an operative element to a predetermined pressure will yield a given resistivity that can be related to size of an operating element. According, in the practice of the method, it may be beneficial to use resistivity as a target value, and when using the operative element as a treatment device, the method can include expanding the operative element to achieve a given target or predetermined resistivity.
Turning now to illustrative examples of the approaches to measuring the internal dimension of a body lumen, embodiments of operative elements that that include an electrode support 160 that wraps overlappingly around an expandable balloon 150 and which provides a base from which size-sensing elements operate will be described first; embodiments that make use of an electrically conductive elastomer as a measuring element are described further below.
Another feature associated with the manner in which the inner-laying edge 162 and the outer-laying edge 164 of the energy-delivery support 160 interact involves their ability to slide past each other without disturbing the integrity or their generally flattened aspect; this feature derives from the stiffness of the material forming the support 160, and its general non-self sticking nature. Embodiments of the support 160 typically comprise a flexible, non-distensible backing, formed from a thin, rectangular sheet of polymer materials such as polyimide, polyester or other flexible thermoplastic or thermosetting polymer film. The support 160 may also comprise polymer covered materials, or other nonconductive materials. Additionally, the backing may include an electrically insulating polymer, with an electro-conductive material, such as copper, deposited onto a surface so that an electrode pattern can be etched into the material to create an array of electrodes. The slidability of the two longitudinal edges across each other is not particularly visible in
Turning to some general considerations,
Turning now to illustrative examples of the approaches to measuring the internal dimension of a body lumen, embodiments of operative elements that that include a piece of conductive elastomer wrapped around the operative element will be described.
A circuit that includes a conductive elastomer arranged around an operative element in a manner such that the length of the elastomer reflects the degree of expansion of the circumference of the operative element thus provides a signal that can be related to the circumference of the operative element.
Two bands of conductive elastomer are shown in the operative element embodiment shown in
The provision of one or more bands of conductive elastomer 180 to provide information that relates directly to the circumference of an operative element is broadly applicable to many ablational operative elements that expand to make therapeutic contact with a body lumen. U.S. Pat. No. 7,150,745 of Stern et al. (incorporated herein, in its entirety), for example depicts embodiments of operative elements in
Various of the ablational system and method embodiments provided in U.S. Pat. No. 7,150,745 of Stern also include an overlapping ablational energy delivery element support in which a region where the longitudinal edges of the support mutually overlap is related to the degree of circumferential expansion provided by an expandable mechanism configured within the circumferential space of the support. These embodiments include those depicted in FIGS. 14A and 14B, 15A-15C, 16, and 17 (of U.S. Pat. No. 7,150,745).
U.S. Pat. No. 7,150,745 of Stern et al. (incorporated herein, in its entirety) further includes description of various configurations of ablational energy delivery elements in the form of electrode arrays that may be place on an expandable electrode support (see FIGS. 13a-14d of U.S. Pat. No. 7,150,745). All of these ablational energy delivery elements may be included on embodiments of operative elements and their overlapping electrode supports as described in this specification and are hereby included as embodiments of the present invention.
Typical embodiments of the device of the present invention include radiofrequency delivery elements as the means by which to distribute ablative energy into targeted luminal tissue. The radiofrequency elements may be monopolar or biopolar electrodes, an electrode array of any pattern, or solid-state circuitry. As described above, these elements may, in some embodiments be arranged directly on an inflatable member such as a balloon, and in other embodiments be arranged on an electrode support, which itself is engaged at least partially around a balloon. Although the exemplary embodiments described herein typically distribute radiofrequency energy delivered by appropriate means, some embodiments may make use of other forms of ablative energy and appropriate distribution elements, such as microwave energy emanating from an antenna, light energy emanating from photonic elements, thermal energy transmitted conductively from heated ablational structure surfaces or as conveyed directly to tissue by heated gas or liquid, or a heat-sink draw of energy, as provided by cryonic cooling of ablational structure surfaces, or as applied by direct cold gas or fluid contact with tissue.
U.S. patent application Ser. No. 12/114,628 of Kelly et al., entitled “Method and apparatus for gastrointestinal tract ablation for treatment of obesity”, as filed on May 2, 2008 further includes embodiments of electrode arrays can effect a fractional ablation (see FIGS. 48A-54B); a fractional ablation being one in which a portion of the tissue within the target area is ablated and another portion is not significantly affected. The result of such partial or fractional ablation is depicted in FIG. 55 of the Kelly application (U.S. Ser. No. 12/114,628). All of these ablational energy delivery element arrays are compatible devices and methods for determining the dimensions of a body lumen site targeted for ablation as described in the present disclosure, and are hereby included as embodiments of the invention described herein.
U.S. Pat. No. 7,150,745 of Stern et al. further includes extensive description of a generator as a component of a larger system that controls the operation of an ablational operative element. More particularly the generator controls the delivery of power, such as radiofrequency power, to the operative element, for distribution therefrom into target tissue. Further factors that participate in controlling the delivery of energy or power from the operative element include the time-course over which energy is delivered, and the temperature and impedance of target tissue. A constancy in the rate of power delivery is provided by a proportional derivative controller, which increases power level, and thus inherently the voltage level, until power reaches a set target value. In one embodiment, the generator is adapted to control the amount of energy delivered to the tissue over time based on the measured diameter of the esophagus as provided by resistivity values from the size-sensing circuits described in this disclosure, and as depicted in
Embodiments of the present invention include a method for ablating tissue in a body lumen that normalizes ablational energy per unit surface area of target tissue, as shown in
Devices and methods related to the present invention are described in detail in U.S. patent application Ser. No. 11/244,385 of Jackson (US 2006/0095032), which specification, as noted above, is incorporated in its entirety into this application. That application describes the use of pressure and mass-flow information related to the influx of an expansion medium into an expandable balloon to derive sizing information. The present application also makes use of pressure information in order to allow the balloon to be inflated to a predetermined pressure. The appropriate pressure is one that varies over a range from about 1 psig to 7 psig, in some particular embodiments from about 3 psig to 5 psig and in some particular embodiments to a pressure of about 4 psig. This pressure, which may in some embodiments be determined on a case-by-case basis, but is more typically derived from general knowledge and experience with the target site. One of the factors underlying the rationale for the appropriate pressure includes the intention to effect a coaptive ablation, one in which the flow of blood into vessels of the region, capillaries in particular, is stopped by the local application of pressure from the expanded operative element, as described in U.S. patent application Ser. No. 11/244,385. Another aspect of the rationale for determining a target pressure to which balloon should be appropriately inflated relates to the compliance of the targeted lumen, i.e., the degree of change in circumference per unit outwardly applied pressure from within the lumen. These aspects of rationale thus underlie the step of the presently described method in which the balloon is inflated to a predetermined pressure, typically about 4 psig. In other embodiments of the invention that could be applied to other target sites, or to further another therapeutic objective, other pressures may be appropriately applied, and thus the use any appropriate pressure is included as an embodiment of the present invention.
Various terms have been used in the description to convey an understanding of the invention; it will be understood that the meaning of these various terms extends to common linguistic or grammatical variations or forms thereof. Terminology that is introduced at a later date that may be reasonably understood as a derivative of a contemporary term or designating of a subset of objects embraced by a contemporary term will be understood as having been described by the now contemporary terminology. While some theoretical considerations have been advanced in furtherance of providing an understanding of the invention the claims to the invention are not bound by such theory. For example, the level of pressure appropriate for inflating the balloon prior to the delivery of ablational energy is related by theory to the pressure in capillaries of the ablation site in order that a coaptive ablation may be effected. Moreover, any one or more features of any embodiment of the invention can be combined with any one or more other features of any other embodiment of the invention, without departing from the scope of the invention. Further, it should be understood that while these inventive methods and devices have been described as providing therapeutic benefit to the esophagus by way of example, such devices and embodiments may also have therapeutic application in other lumen or cavity sites within the body. Still further, it should be understood that the invention is not limited to the embodiments that have been set forth for purposes of exemplification, but is to be defined only by a fair reading of claims that are appended to the patent application, including the full range of equivalency to which each element thereof is entitled.
This application claims priority to U.S. Provisional Patent Application No. 60/936,865 of Wallace et al., entitled “Electrical means to estimate diameter measurements and an unfurling electrode concept to adapt to any body orifice”, as filed on Jun. 22, 2007.
Number | Name | Date | Kind |
---|---|---|---|
552832 | Fort | Jan 1896 | A |
3901241 | Allen, Jr. | Aug 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4011872 | Komiya | Mar 1977 | A |
4304239 | Perlin | Dec 1981 | A |
4311154 | Sterzer et al. | Jan 1982 | A |
4407298 | Lentz et al. | Oct 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4532924 | Auth et al. | Aug 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4640298 | Pless et al. | Feb 1987 | A |
4658836 | Turner | Apr 1987 | A |
4662383 | Sogawa et al. | May 1987 | A |
4674481 | Boddie, Jr. et al. | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4776349 | Nashef et al. | Oct 1988 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4887614 | Shirakami et al. | Dec 1989 | A |
4895138 | Yabe | Jan 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4930521 | Metzger et al. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4947842 | Marchosky et al. | Aug 1990 | A |
4949147 | Bacuvier | Aug 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5010895 | Maurer et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5045056 | Behl | Sep 1991 | A |
5046512 | Murchie | Sep 1991 | A |
5047028 | Qian | Sep 1991 | A |
5056532 | Hull et al. | Oct 1991 | A |
5057107 | Parins et al. | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5083565 | Parins | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5151100 | Abele et al. | Sep 1992 | A |
5156151 | Imran | Oct 1992 | A |
5163938 | Kambara et al. | Nov 1992 | A |
5171299 | Heitzmann et al. | Dec 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5215103 | Desai | Jun 1993 | A |
5236413 | Fiering | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5255679 | Imran | Oct 1993 | A |
5256138 | Burek et al. | Oct 1993 | A |
5257451 | Edwards et al. | Nov 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5275162 | Edwards et al. | Jan 1994 | A |
5275169 | Afromowitz et al. | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281217 | Edwards et al. | Jan 1994 | A |
5281218 | Imran | Jan 1994 | A |
5290286 | Parins | Mar 1994 | A |
5292321 | Lee | Mar 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5314438 | Shturman | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5316020 | Truffer | May 1994 | A |
5324284 | Imran | Jun 1994 | A |
5328467 | Edwards et al. | Jul 1994 | A |
5336222 | Durgin, Jr. et al. | Aug 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5365926 | Desai | Nov 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5370678 | Edwards et al. | Dec 1994 | A |
5375594 | Cueva | Dec 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5397339 | Desai | Mar 1995 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415657 | Taymor-Luia | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5423808 | Edwards et al. | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5423812 | Ellman et al. | Jun 1995 | A |
5425704 | Sakurai et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5435805 | Edwards | Jul 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5456662 | Edwards et al. | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458571 | Lampropoulos et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5486161 | Lax et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505728 | Ellman et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5509419 | Edwards et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514131 | Edwards et al. | May 1996 | A |
5517989 | Frisbie et al. | May 1996 | A |
5520684 | Imran | May 1996 | A |
5522815 | Burgin, Jr. et al. | Jun 1996 | A |
5524622 | Wilson | Jun 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5531677 | Lundquist et al. | Jul 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5533958 | Wilk | Jul 1996 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540655 | Edwards et al. | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5549644 | Lundquist et al. | Aug 1996 | A |
5549661 | Korkis et al. | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5554110 | Edwards et al. | Sep 1996 | A |
5556377 | Rosen et al. | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5558673 | Edwards et al. | Sep 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5566221 | Smith et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5624439 | Edwards et al. | Apr 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5651788 | Fleischer et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5688490 | Tournier et al. | Nov 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713942 | Stern et al. | Feb 1998 | A |
5716410 | Wang et al. | Feb 1998 | A |
5720293 | Quinn et al. | Feb 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5732698 | Swanson et al. | Mar 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5748699 | Smith | May 1998 | A |
5752522 | Murphy | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5797835 | Green | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800334 | Wilk | Sep 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5820629 | Cox | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5827273 | Edwards | Oct 1998 | A |
5830129 | Baer et al. | Nov 1998 | A |
5830213 | Panescu et al. | Nov 1998 | A |
5833688 | Sieben et al. | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5842984 | Avitall | Dec 1998 | A |
5846196 | Siekmeyer et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5861036 | Godin | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5871483 | Jackson et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5888743 | Das | Mar 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5902308 | Murphy | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5925044 | Hofmann et al. | Jul 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5976129 | Desai | Nov 1999 | A |
5984861 | Crowley | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6010511 | Murphy | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6023638 | Swanson et al. | Feb 2000 | A |
6027499 | Johnston et al. | Feb 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6039701 | Sliwa et al. | Mar 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6044846 | Edwards | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053913 | Tu et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6073052 | Zelickson et al. | Jun 2000 | A |
6086558 | Bower et al. | Jul 2000 | A |
6091993 | Bouchier et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6095966 | Chornenky et al. | Aug 2000 | A |
6096054 | Wyzgala et al. | Aug 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6120434 | Kimura et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6138046 | Dalton | Oct 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6146149 | Daound | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6162237 | Chan | Dec 2000 | A |
6179836 | Eggers et al. | Jan 2001 | B1 |
6182666 | Dobak, III | Feb 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6197022 | Baker | Mar 2001 | B1 |
6237355 | Li | May 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6321121 | Zelickson et al. | Nov 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6325800 | Durgin et al. | Dec 2001 | B1 |
6338726 | Edwards et al. | Jan 2002 | B1 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6358245 | Edwards et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6383181 | Johnston et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6402744 | Edwards et al. | Jun 2002 | B2 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6415016 | Chornenky et al. | Jul 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6425877 | Edwards | Jul 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6432104 | Durgin et al. | Aug 2002 | B1 |
6440128 | Edwards et al. | Aug 2002 | B1 |
6448658 | Takata et al. | Sep 2002 | B2 |
6451014 | Wakikaido et al. | Sep 2002 | B1 |
6454790 | Neuberger et al. | Sep 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6468272 | Koblish et al. | Oct 2002 | B1 |
6514246 | Swanson et al. | Feb 2003 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6535768 | Baker et al. | Mar 2003 | B1 |
6544226 | Gaiser et al. | Apr 2003 | B1 |
6547776 | Gaiser et al. | Apr 2003 | B1 |
6547787 | Altman et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6551310 | Ganz et al. | Apr 2003 | B1 |
6551315 | Kortenbach et al. | Apr 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6572578 | Blanchard | Jun 2003 | B1 |
6572610 | Kovalcheck et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575966 | Lane et al. | Jun 2003 | B2 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6613047 | Edwards | Sep 2003 | B2 |
6641581 | Muzzammel | Nov 2003 | B2 |
6663626 | Truckai et al. | Dec 2003 | B2 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6689130 | Arail et al. | Feb 2004 | B2 |
6695764 | Silverman et al. | Feb 2004 | B2 |
6712074 | Edwards et al. | Mar 2004 | B2 |
6712814 | Edwards et al. | Mar 2004 | B2 |
6712815 | Sampson et al. | Mar 2004 | B2 |
6740082 | Shadduck | May 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6752806 | Durgin et al. | Jun 2004 | B2 |
6800083 | Hiblar et al. | Oct 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6846312 | Edwards et al. | Jan 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6866663 | Edwards et al. | Mar 2005 | B2 |
6872206 | Edwards et al. | Mar 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6918906 | Long | Jul 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6953469 | Ryan | Oct 2005 | B2 |
6964661 | Rioux et al. | Nov 2005 | B2 |
6971395 | Edwards et al. | Dec 2005 | B2 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6994704 | Qin et al. | Feb 2006 | B2 |
7004938 | Ormsby et al. | Feb 2006 | B2 |
7048734 | Fleischman et al. | May 2006 | B1 |
7056320 | Utley et al. | Jun 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7089063 | Lesh et al. | Aug 2006 | B2 |
7122031 | Edwards et al. | Oct 2006 | B2 |
7125407 | Edwards et al. | Oct 2006 | B2 |
7150745 | Stern et al. | Dec 2006 | B2 |
7160294 | Croft | Jan 2007 | B2 |
7165551 | Edwards | Jan 2007 | B2 |
7167758 | Baker et al. | Jan 2007 | B2 |
7179257 | West et al. | Feb 2007 | B2 |
7293563 | Utley et al. | Nov 2007 | B2 |
7316652 | Dalgaard et al. | Jan 2008 | B2 |
7326207 | Edwards | Feb 2008 | B2 |
7329254 | West et al. | Feb 2008 | B2 |
7416549 | Young et al. | Aug 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7680543 | Azure | Mar 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
20010041887 | Crowley | Nov 2001 | A1 |
20010051802 | Woloszko et al. | Dec 2001 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020128650 | McClurken | Sep 2002 | A1 |
20020177847 | Long | Nov 2002 | A1 |
20020183739 | Long | Dec 2002 | A1 |
20030069572 | Wellman et al. | Apr 2003 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030109837 | McBride-Sakal | Jun 2003 | A1 |
20030153905 | Edwards et al. | Aug 2003 | A1 |
20030158550 | Ganz et al. | Aug 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030181905 | Long | Sep 2003 | A1 |
20030191512 | Laufer et al. | Oct 2003 | A1 |
20030216727 | Long | Nov 2003 | A1 |
20040082947 | Oral et al. | Apr 2004 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040122452 | Deem et al. | Jun 2004 | A1 |
20040147916 | Baker | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040172016 | Bek et al. | Sep 2004 | A1 |
20040204708 | Edwards et al. | Oct 2004 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20040215235 | Jackson et al. | Oct 2004 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20040236316 | Danitz et al. | Nov 2004 | A1 |
20040243124 | Im et al. | Dec 2004 | A1 |
20050010162 | Utley et al. | Jan 2005 | A1 |
20050033271 | Qin et al. | Feb 2005 | A1 |
20050070978 | Bek et al. | Mar 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096713 | Starkebaum et al. | May 2005 | A1 |
20050107829 | Edwards et al. | May 2005 | A1 |
20050143727 | Koblish et al. | Jun 2005 | A1 |
20050149013 | Lee | Jul 2005 | A1 |
20050154386 | West et al. | Jul 2005 | A1 |
20050159743 | Edwards et al. | Jul 2005 | A1 |
20050187546 | Bek et al. | Aug 2005 | A1 |
20050215983 | Brock | Sep 2005 | A1 |
20050245926 | Edwards et al. | Nov 2005 | A1 |
20050288664 | Ford et al. | Dec 2005 | A1 |
20060009758 | Edwards et al. | Jan 2006 | A1 |
20060015162 | Edward et al. | Jan 2006 | A1 |
20060041256 | Edwards et al. | Feb 2006 | A1 |
20060069303 | Couvillon | Mar 2006 | A1 |
20060086363 | Qin et al. | Apr 2006 | A1 |
20060095032 | Jackson et al. | May 2006 | A1 |
20060247614 | Sampson et al. | Nov 2006 | A1 |
20060259028 | Utley et al. | Nov 2006 | A1 |
20060259029 | Utley et al. | Nov 2006 | A1 |
20060259030 | Utley et al. | Nov 2006 | A1 |
20060282071 | Utley et al. | Dec 2006 | A1 |
20070066973 | Stern et al. | Mar 2007 | A1 |
20070100333 | Jackson et al. | May 2007 | A1 |
20070118104 | Wallace et al. | May 2007 | A1 |
20070118106 | Utley et al. | May 2007 | A1 |
20070118159 | Deem et al. | May 2007 | A1 |
20070135809 | Utley et al. | Jun 2007 | A1 |
20070142831 | Shadduck | Jun 2007 | A1 |
20070167963 | Deem et al. | Jul 2007 | A1 |
20070219570 | Deem et al. | Sep 2007 | A1 |
20070255296 | Sauer | Nov 2007 | A1 |
20070276361 | Stevens-Wright et al. | Nov 2007 | A1 |
20070287994 | Patel | Dec 2007 | A1 |
20070288001 | Patel | Dec 2007 | A1 |
20080097427 | Stern et al. | Apr 2008 | A1 |
20080275445 | Kelly et al. | Nov 2008 | A1 |
20080319350 | Wallace et al. | Dec 2008 | A1 |
20090012512 | Utley et al. | Jan 2009 | A1 |
20090012513 | Utley et al. | Jan 2009 | A1 |
20090012518 | Utley et al. | Jan 2009 | A1 |
20090299355 | Bencini et al. | Dec 2009 | A1 |
20100063495 | Utley et al. | Mar 2010 | A1 |
20100234840 | Jackson et al. | Sep 2010 | A1 |
20110270249 | Utley et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
3838840 | May 1990 | DE |
4303882 | Aug 1994 | DE |
0105677 | Apr 1984 | EP |
0115420 | Aug 1984 | EP |
0139607 | May 1985 | EP |
0251745 | Jan 1988 | EP |
0521595 | Jan 1993 | EP |
0608609 | Aug 1994 | EP |
1323382 | Jul 2003 | EP |
1634542 | Mar 2006 | EP |
8-506738 | Jul 1996 | JP |
2005503181 | Feb 2005 | JP |
WO 9101773 | Feb 1991 | WO |
WO 9103207 | Mar 1991 | WO |
WO 9210142 | Jun 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9407446 | Apr 1994 | WO |
WO 9410925 | May 1994 | WO |
WO 9421165 | Sep 1994 | WO |
WO 9422366 | Oct 1994 | WO |
WO 9426178 | Nov 1994 | WO |
WO 9518575 | Jul 1995 | WO |
WO 9519142 | Jul 1995 | WO |
WO 9525472 | Sep 1995 | WO |
WO 9600042 | Jan 1996 | WO |
WO 9616606 | Jun 1996 | WO |
WO 9629946 | Oct 1996 | WO |
WO 9704702 | Feb 1997 | WO |
WO 9706857 | Feb 1997 | WO |
WO 9732532 | Sep 1997 | WO |
WO 9743971 | Nov 1997 | WO |
WO 9812999 | Apr 1998 | WO |
WO 9814238 | Apr 1998 | WO |
WO 9818393 | May 1998 | WO |
WO 9903413 | Jan 1999 | WO |
WO 9935987 | Jul 1999 | WO |
WO 9942046 | Aug 1999 | WO |
WO 9955245 | Nov 1999 | WO |
WO 0001313 | Jan 2000 | WO |
WO 0059393 | Oct 2000 | WO |
WO 0062699 | Oct 2000 | WO |
WO 0066017 | Nov 2000 | WO |
WO 0066021 | Nov 2000 | WO |
WO 0066052 | Nov 2000 | WO |
WO 0069376 | Nov 2000 | WO |
WO 0122897 | Apr 2001 | WO |
WO 0135846 | May 2001 | WO |
WO 0145550 | Jun 2001 | WO |
WO 0189440 | Nov 2001 | WO |
WO 02096327 | Dec 2002 | WO |
WO 03070091 | Aug 2003 | WO |
WO 2004043280 | May 2004 | WO |
WO 2007001981 | Jan 2007 | WO |
WO 2007061984 | May 2007 | WO |
Entry |
---|
Castell, D.O. Gastroesophageal Reflux Disease: Current Strategies for Patient Management. Arch Fam Med. 1996; 5(4):221-227. |
Dallamagne et al; Laparoscopic Nissen Fundoplication: Preliminary. Surgical Laparoscopy and Endoscopy. 1991; 1(3):138-143. |
Hinder et al; The Technique of Laparoscopic Nissen Fundoplication. Surgical Laparoscopy and Endoscopy. 1992; 2(3):265-272. |
Kaneko et al; Physiological Laryngeal Pacemaker. Trans Am Soc. Artif Intern Organs. 1985; XXXI:293-296. |
Karlstrom et al; Ectopic Jejunal Pacemakers and Enterogastric Reflux Roux Gastrectomy: Effect of Intestinal Pacing. Surgery. 1989; 106(3):486-495. |
Kelly, K.A. et al; Duodenal-Gastric Reflux and Slowed Gastric Emptying by Electrical Pacing of the Canine Duodenal Pacesetter Potential. Gastroenterology. 1977; 72(3):429-433. |
Mugica, et al. Direct Diaphragm Stimulation. PACE. 1987; 10:252-256. |
Mugica, et al., Preliminary Test of a Muscular Diaphragm Pacing System on Human Patients. Neurostimulation: An Overview, chapter 21. 1985; 263-279. |
Reynolds, J.C. Influence of Pathophysiology, Severity, and Cost on the Medical Management of Gastroesophageal Reflux Disease. Am J. Health-Syst Phar. 1996; 53(22sul3):S5-S12. |
Rice et al; Endoscopic Paranasal Sinus Surgery. Chapter 5, Functional Endoscopic Paranasal Sinus Surgery, The Technique of Messerklinger. Raven Press. 1988; 75-102. |
Rice et al; Endoscopic Paranasal Sinus Surgery. Chapter 6, Total Endoscopic Sphenoethmoidectomy. The Technique of Wigand. Raven Press. 1988; 103-125. |
Salameh et al; An Animal Model Study to Clarify and Investigate Endoscopic Tissue Coagulation by Using a New Monopolar Device. Gastrointestinal Endoscopy; 2004; 59 (1): 107-112. |
Urshel, J.D. Complications of Antireflux Surgery. Am J. Surg. 1993; 166 (1):68-70. |
Wallace et al; U.S. Appl. No. 11/830,251 entitled “Cleaning Devices and Methods,” filed Jul. 30, 2007. |
Utley et al; U.S. Appl. No. 11/830,291 entitled “Cleaning Device and Methods,” filed Jul. 30, 2007. |
Ganz et al; U.S. Appl. No. 12/259,136 entitled “System and method of treating abnormal tissue in the human esophagus,” filed Oct. 27, 2008. |
Utley, David S.; U.S. Appl. No. 12/270,373 entitled “System and method for ablational treatment of uterine cervical neoplasma,” filed Nov. 13, 2008. |
Shadduck, John H.; U.S. Appl. No. 12/751,803 entitled “Surgical instruments and techniques for treating gastro-esophageal reflux disease,” filed Mar. 31, 2010. |
Shadduck, John; U.S. Appl. No. 12/368,943 entitled “Surgical instruments and techniques for treating gastro-esophageal reflux disease,” filed Feb. 10, 2009. |
Wallace et al.; U.S. Appl. No. 12/404,159 entitled “Auto-aligning ablating device and method of use,” filed Mar. 13, 2009. |
Wallace et al.; U.S. Appl. No. 13/051,738 entitled “Selectively expandable operative element support structure and methods of use,” filed Mar. 18, 2011. |
Jackson, Jerome; U.S. Appl. No. 13/181,484 entitled “Methods and systems for treatment of tissue in a body lumen,” filed Jul. 12, 2011. |
Jackson et al.; U.S. Appl. No. 13/189,793 entitled “Methods and systems for determining physiologic characteristics for treatment of the esophagus,” filed Jul. 25, 2011. |
Number | Date | Country | |
---|---|---|---|
20080319350 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60936865 | Jun 2007 | US |