The subject matter herein relates generally to electrical connector assemblies.
Due to their favorable electrical characteristics, coaxial cables and connectors have grown in popularity for interconnecting electronic devices and peripheral systems. The connectors include an inner conductor coaxially disposed within an outer conductor, with a dielectric material separating the inner and outer conductors. A typical application utilizing coaxial cable connectors is a radio-frequency (RF) application having RF connectors designed to work at radio frequencies in the UHF and/or VHF range.
Typically, one or more connectors are mounted to a circuit board of an electronic device at an input/output port of the device and extend through an exterior housing of the device for connection with a coaxial cable connector. Some systems include a plurality of connectors held in a common housing. One particular example of a system that uses multiple connectors is a backplane module having a plurality of board mounted connectors with a separate mating assembly for mating with a daughtercard module. The mating assembly includes a housing holding a plurality of coaxial cable connectors, which are connected to the board mounted connectors by a cable assembly having lead end connectors individually terminated to corresponding board mounted connectors. The daughtercard module is mated with the mating assembly.
Typical backplane systems using RF connectors are not without disadvantages. For instance, each of the lead end connectors are typically individually and separately mated with the board connectors, which is time consuming and increases the cost of assembly. Additionally, the spacing between the housing of the mating assembly and the board connectors may be very small, such as less than one inch, making the assembly process difficult and time consuming. Manipulating a large number of connections for mating also increases time and complexity.
Some module housings include keying inserts that are configured to receive reciprocal pins of a mating shroud. The pins may include a generally cylindrical shaft, but with a flat surface portion. The pins are configured to mate into the keying inserts of the module housing such that the flat surface portions are aligned with and mated into reciprocal flat features of the keying inserts. In this manner, the keying inserts ensure that the mating shroud is properly aligned and mated with the module housing. However, typical keying inserts do not provide a positive electrical conductive path for electrostatic discharge. Thus, a sudden electrical surge may pass from the pins and into the module housing, which may damage electrical modules within the module housing. Additionally, typical module housings include keying inserts that are front-loaded and require separate and distinct retaining clips to secure the keying inserts to the module housings, thereby increasing the time and complexity of the manufacturing process.
Certain embodiments provide an assembly configured to retain a plurality of electrical modules. The assembly is configured to mate with a shroud having a plurality of connecting interfaces configured to mate with the plurality of electrical modules. The assembly includes a frame having at least one shroud-securing bracket and at least one bay configured to retain at least one of the plurality of electrical modules. The assembly also includes at least one keying insert retained within at least one insert passage of the at least one shroud-securing bracket. The keying insert(s) includes at least one adjustable keying feature that is configured to be adjusted to different positions in order to accommodate a reciprocal alignment post of the shroud.
The keying insert(s) may be configured to be adjusted by rotating the keying insert(s) relative to the shroud-securing bracket. The keying insert(s) may include an outer body having a cylindrical internal passage connected to the adjustable keying feature(s). The adjustable keying feature(s) may include a flattened internal passage wall. The outer body may be an octagonal outer body.
The assembly may also include at least one fastener that secures the keying insert(s) to the shroud-securing bracket(s). Alternatively, the keying insert(s) may be snapably secured within the insert passage(s). The keying insert(s) may include a tube having deflectable segments configured to snapably secure within the insert passage(s).
The assembly may also include at least one grounding member secured within the shroud-securing bracket(s). The grounding member(s) may be configured to direct electrostatic discharge from the shroud to ground. The grounding member(s) may include opposed annular ends integrally connected to louvered vanes. The louvered vanes may curve inwardly toward a center of the at least one grounding member. The grounding member(s) may be within the keying insert(s). The grounding member(s) may be separate and distinct from the keying insert(s).
Certain embodiments provide an assembly configured to retain a plurality of electrical modules. The assembly is configured to mate with a shroud having a plurality of connecting interfaces configured to mate with the plurality of electrical modules. The assembly may include a frame having first and second shroud-securing brackets and a plurality of bays configured to retain the plurality of electrical modules. The first and second securing brackets may be located at opposite ends of the frame.
The assembly may also include first and second keying inserts retained within first and second insert passages, respectively, of the first and second shroud-securing brackets, respectively. The first and second keying inserts may include first and second outer bodies, respectively, having first and second cylindrical internal passages, respectively, connected to first and second adjustable keying features, respectively. The first and second adjustable keying features may be configured to be adjusted to different positions in order to accommodate reciprocal alignment posts of the shroud. The first and second keying inserts may be configured to be adjusted independently of one another. Each of the first and second keying inserts may be configured to be adjusted by rotating the first and second keying inserts relative to the first and second shroud-securing brackets, respectively.
Each of the first and second adjustable keying features may include a flattened internal passage wall. Each of the first and second outer bodies may include an octagonal outer body.
The assembly may also include fasteners that secure the first and second keying inserts to the first and shroud-securing brackets, respectively. Alternatively, each of the first and second keying inserts may include a tube having deflectable segments configured to snapably secure within the first and second insert passages.
The assembly may also include first and second grounding members secured within the first and second shroud-securing brackets, respectively. The first and second grounding members may be configured to direct electrostatic discharge from the shroud to ground. Each of the first and second grounding members may include opposed annular ends integrally connected to louvered vanes. The first and second grounding members may be within the first and second keying inserts, respectively.
A shroud, frame, base, or the like 16 is secured to the backplane 12. The shroud 16 includes a circumferential upstanding wall 18 defining an internal cavity 20. A plurality of connecting interfaces 22, 24, 26, and 28 are contained within the internal cavity 20. The connecting interfaces 22 and 24 may include a plurality of backplane contacts 30 configured to mate with electrical modules of a module shell, housing, assembly, or the like 32. Similarly, the connecting interface 26 may include a plurality of backplane contacts 34 configured to mate with RF connecting interfaces of the module shell 32. The connecting interface 28 may include a plurality of digital contacts 36 configured to mate with reciprocal digital contacts 38 secured to the module shell 32.
Alignment posts 40 are positioned at opposite ends of the internal cavity 20 and extend outwardly from the shroud 16. Each alignment post 40 may include a keying feature, such as a flattened area or surface 42 configured to ensure proper alignment with reciprocal apertures 44 of the module shell 32. That is, the alignment posts 40 and the reciprocal apertures 44 cooperate to ensure that the shroud 16 and the module shell 32 mate in a proper orientation with respect to one another.
The module shell 32 is secured to the daughtercard 14 and includes a plug housing 46 configured to mate into the internal cavity 20 of the shroud 16. The module shell 32 includes a plurality of compartments or bays 47 configured to receive and retain a plurality of modules. As shown in
The module shell 32 may include a plurality of cable-connecting modules 48 configured to mate with the connecting interfaces 22 and 24. The cable-connecting modules 48 may be RF cable-connecting modules that include strain-relief features or brackets 50 securing RF coaxial cables 52, such as shown and described in U.S. application Ser. No. 12/939,862, entitled “RF Module,” filed on Nov. 4, 2010, which is hereby incorporated by reference in its entirety.
The module shell 32 may also include a digital module 54 having the plurality of digital contacts 38 configured to mate with the digital contacts 36 within the internal cavity 20 of the shroud 16.
The module shell 32 may also include an RF module 60 configured to mate with the backplane contacts 34 of the connecting interface 26 of the shroud 16. While the system 10 is shown with a plurality of modules, the system 10 may be configured such that the bays 47 accommodate a wide variety of modules. For example, each bay 47 may retain an RF module 60 that is configured to mate with a reciprocal connecting interface of the shroud 16. Optionally, each bay 47 may retain a cable-retaining module 48, digital module 54, or any combination of such modules and/or RF modules 60.
The RF module 60, for example, is usable with any system that interconnects coaxial connectors and/or coaxial cables. The RF module 60 is particularly useful in systems that interconnect multiple coaxial connectors simultaneously. The electrical connector system 10 may be used within a rugged environment, such as in a military or aeronautical application in which the components of the electrical connector system 10 may be subject to vibration and/or shock.
As shown in
Each shroud-securing bracket 78 includes a front face 100 having an insert passage 102 into which the keying insert 90 is retained, and two fastener through-holes (hidden from view) that may be aligned with the vertical axis X of the insert passages 102. The fastener through-holes receive and retain fasteners 104 that securely clamp the keying insert 90 into the shroud-securing bracket 78. The fasteners 104 may be standard or Phillips head screws. Thus, standard or Phillips head screwdrivers, which are well known and ubiquitous, may be used to secure the keying inserts 90 into the shroud-securing brackets 78. While two fasteners 104 are shown, more or less fasteners 104 may be used to secure the keying insert 90 into the shroud-securing bracket 78. For example, a single fastener above or below the insert passage 102 may be used to securely clamp the keying insert 90 into the shroud-securing bracket 78. Additionally, the fasteners 104 may be located at other positions that are not aligned with the vertical axis X of the insert passage 102.
Each keying insert 90 is adjustable and may include an octagonal outer body 106 having eight sides A-H. The octagonal outer body 106 defines an internal passage 108 having a rounded, smooth, cylindrical internal passage wall 110 connected to a keying feature, such as a flattened internal passage wall 112. The cylindrical internal passage wall 110 may span a radial arc of 315°, while the flattened internal passage wall 112 may span a radial arc of 45°. Each keying insert 90 may be adjusted, such as by being rotated, so that the flattened internal passage wall 112 is at a different location from sides A-H. For example, as shown in
As shown in
Alternatively, the keying inserts 90 may be include more or less sides than eight. Accordingly, the alignment posts 40 would have a reciprocal surface, protuberance, or other such feature, such as a flattened area, that would be configured to mate with the keying feature located at one of the sides. Additionally, the keying inserts 90 may include more than one keying feature. For example, each keying insert 90 may include two or more flattened areas located at different sides (for example, a flattened internal passage wall at sides A and E, or A, C, E, and G), while the reciprocal alignment posts 40 would have the same number of reciprocal features.
Additionally, the keying inserts 90 may have different keying features other than flattened internal passage walls. For example, the keying inserts 90 may include slots, while the alignment posts 40 have tabs, or vice versa. The keying inserts 90 may be any shape or size that may key to a reciprocal feature of the alignments posts 40.
A grounding member 140, which may be flexible and/or spring-biased, is positioned within the recessed passage 132. The grounding member 140 may be a louvered band that includes opposed annular ends 142a and 142b connected by louvered vanes 144 that generally perpendicularly connect to the annular ends 142a and 142b. The louvered vanes 144 are separated by gaps 146. The louvered vanes 144 generally inwardly bend, cant, slope, or the like from each annular end 142a and 142b toward the center 148 of the flexible member 140. The louvered vanes 144 and separating gaps 146 provide flexibility to the grounding member 140. When the grounding member 140 is inserted into the recessed passage 132, the leading opposed annular end 142a is compressed as it passes into the undercut cavity of the recessed passage 132. The grounding member 140 continues to pass through the undercut cavity of the recessed passage 132 until the leading annular end 142a snaps into the undercut cavity of the recessed passage 132, and snaps back to its at-rest position within the recessed passage 132. Similarly, the trailing annular end 142b is positioned at an opposite end (from the leading end 142a) of the undercut cavity of the internal passage 132, thereby locking the flexible member 140 in place. The louvered vanes 144 have a smaller diameter than the recessed passage 132, and therefore fit therein. For example, the louvered vanes 144 may be configured to conform to, and abut, the internal walls that define the recessed passage 132.
The grounding member 140 provides a multi-point contact system within the shroud-securing bracket 78. As described above, the grounding member 140 slides into the recessed passage 132, with the leading end 142a flexing or popping out so that the louvered vanes 144 are retained within the undercut cavity of the recessed passage 132. As explained below with respect to
The grounding member 140 may be separate and distinct from the keying insert 90. Once the shell module or assembly 32 is fully assembled, the grounding member 140 may or may not directly contact the keying insert 90. For example, the grounding member 140 may be positioned within the recessed passage 132 a distance from the keying insert 90, which is retained within the insert passage 102 that leads into the recessed passage 132.
Alternatively, the grounding member 140 may not include louvered vanes, but, instead, include a contiguous flexible wall that fits inside the recessed passage.
Once the grounding member 140 is secured within the recessed passage 132, the keying insert 90 is inserted into the reciprocal insert passage 102 at a desired position (with a keying feature at a desired position). After the keying insert 90 is positioned within the insert passage 102, the fasteners 104 are aligned with the fastener through-holes 150 and secured therein. As the fasteners 104 are secured into the through-holes 150, the fastener heads 152 securely clamp to outer edges 120 of the keying insert 90, thereby securely fastening the keying insert 90 to the shroud-securing bracket 78.
The keying inserts 90 may be configured to be secured to the module shell 32 using common fasteners. Thus, the keying inserts 90 may be quickly and easily secured using a common tool, such as a screwdriver. Further, the keying inserts 90 are easily removed and re-oriented through the use of the common tool.
The channels 218 are formed from a distal end of the tube 214 and extend toward a center of the tube 214. The channels 218 allow the segments 216 to deflect inwardly, as the keying insert 202 is inserted into the insert passage 206.
A grounding member 250, similar to the grounding member 140 described above, is retained within the tube 214. The grounding member 250 is within the tube 214 of the keying insert 202. The grounding member 250 may be integrally formed with the keying insert 202. The grounding member 250 may have louvered vanes, as described above. The grounding member 250 is configured to contact an alignment post of a shroud, as described above, to short any electrostatic discharge to ground.
In order to remove the keying insert 202, a tool is used to squeeze the segments 216 together so that they may pass into the reduced-diameter portion 230 of the insert passage 206, and the keying insert 202 is then pushed or pulled out of the insert passage 206.
Thus, the keying insert 202 eliminates the need for separate fasteners. As such, the module shell 200 may be manufactured using less components, as compared to those that use separate and distinct fasteners.
Referring to
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Number | Name | Date | Kind |
---|---|---|---|
4159862 | Funck et al. | Jul 1979 | A |
4558916 | Hehl | Dec 1985 | A |
4869677 | Johnson et al. | Sep 1989 | A |
5073127 | Daly et al. | Dec 1991 | A |
5181855 | Mosquera et al. | Jan 1993 | A |
5667411 | O'Sullivan et al. | Sep 1997 | A |
5788528 | Orr et al. | Aug 1998 | A |
6751392 | Szilagyi et al. | Jun 2004 | B1 |
7108555 | Mao et al. | Sep 2006 | B2 |
7186121 | Costello et al. | Mar 2007 | B1 |
7824210 | Oka et al. | Nov 2010 | B2 |
7892045 | Ratzlaff et al. | Feb 2011 | B2 |
7896683 | Ratzlaff et al. | Mar 2011 | B1 |
7997938 | Costello et al. | Aug 2011 | B2 |
8052481 | Azad et al. | Nov 2011 | B2 |
8425250 | Kagotani | Apr 2013 | B2 |
20110256753 | Gulla | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
0 374 307 | Jun 1990 | EP |
2 185 160 | Jul 1987 | GB |
0062380 | Oct 2000 | WO |
Entry |
---|
European Search Report, Mail Date, Nov. 6, 2013, EP 13 15 9120, Application No. 13159120.8-1801/2642615. |
Number | Date | Country | |
---|---|---|---|
20130252477 A1 | Sep 2013 | US |