A conventional electrical wiring connection system may include a wiring system and components (electrical energy hardware, wire and terminal contacts, connections, etc.) to transfer electrical energy from a device (such as an electricity-generating glass or flexible substrate product(s) (EGPs)) to wires for use. These connections commonly must rely on electrical wiring connections, adding connectors, and installation of junction boxes at discrete points of contact or connection, and electrical testing.
The present invention recognizes that the discrete points of contact or connection in conventional electrical wiring connection systems present challenges for the installation of electricity-generating glass (EGP) devices that have limited or constrained access by space or location. The present invention also recognizes that current mounting systems present a challenge in safely securing electricity-generating glass (EGP) devices to vertical surface of structures, while at the same time allowing for easy non-impinged wiring configurations.
In the conventional art, the installation of an electrical energy junction box (J-Box) device may be compromised or prohibited by difficult, if not impossible, installations due to space, fixture, building and mounting unit constraints that do not allow proper or secure electrical connection. The conventional art is also mounted to the back of drilled glass, which provides weak and possible points of fracture, locations for moisture ingress causing failed electrical connections or electrical shorts, and flawed aesthetics and imperfections.
The present invention recognizes that there is a need for this art in the industry for replacing conventional J-Box electrical wiring connections with an improved and simplified internal- and external-connection system for collecting the electrical energy produced by electricity-generating glass (EGP) devices. To solve these and other related electrical connection issues, the present invention provides a novel internal Electrical Module Junction Box Transfer Device (E-JBTD) that reduces costs, improves safety and electrical connectivity, and improves and simplifies installation processes, thereby providing important advantages for electrical connections for electricity-generating glass (EGP) devices required by glass and window fabricators, and glass installers (i.e., glaziers), photovoltaic (PV) installers, electricians, and maintenance personnel.
The present invention further provides a novel internal Electrical Module Junction Box Transfer Device (E-JBTD) that allows electricity-generating glass (EGP) devices to maintain connection tightness, structural integrity, function, and purpose of a module, laminated veneer, spandrel, etc., and all other glass fabricated products, to function as designed and fabricated while allowing effective electricity transfer from the electricity-generating surface(s) or coatings of the electricity-generating glass devices (EGP) devices to the internal and external elements of the Electrical Module Junction Box Transfer Device (E-JBTD). The exemplary embodiments of the invention allow for maximum electricity transfer using electricity-generating glass (EGP) devices inner connections, while at the same time maintaining all of the performance properties regarding photon transfer, electricity and power generation, and aesthetic value or properties.
The present invention further recognizes that the combining of electricity-generating glass (EGP) devices and an exemplary Electrical Module Junction Box Transfer Device (E-JBTD) will allow productive, efficient, and effective electricity transfer from the device for use. According to example embodiments of the invention, an Electrical Module Junction Box Transfer Device (E-JBTD) can be configured as an integral part of any electricity-generating glass (EGP) or electricity-generating glass (EGP) device module. It is desirable, and in some cases critical, that electron transfer from the electrical coating and/or connections on the inside of the electricity-generating glass (EGP) devices be safely, efficiently, and/or effectively interconnected to the external frame mounted wiring systems for electricity transfer.
The present invention is not limited to any particular electricity-generating glass (EGP) device and can include, for example, various laminated roof modules, laminated veneer, spandrel, creative glass, textured glass, security glass, etc., among other glass products.
The Electrical Module Junction Box Transfer Device (E-JBTD) may be integrated into a glass product, such as into and on the edge of a sealed edge glass product. The Electrical Module Junction Box Transfer Device (E-JBTD) can include engagement devices at opposite electrical series or parallel string terminal connections configured to maximize voltage and current for effective power levels needed for proper connection to other balance of systems (BOS) components.
The Electrical Module Junction Box Transfer Device (E-JBTD) can be integrated into a typical double lite laminated glass product. In some examples, the Electrical Module Junction Box Transfer Device (E-JBTD) can include one or more rigidly mounted in place electrical connector(s), which are physically separated by a non-conductive dielectric insulating material protecting and insulating the electrical contacts. The interconnection between the module and Electrical Module Junction Box Transfer Device (E-JBTD) is novel in inception, and the completion of the connection is utilized by pressing the Electrical Module Junction Box Transfer Device (E-JBTD) on to the existing module electrical tabs and firmly seating the Electrical Module Junction Box Transfer Device (E-JBTD) on the edge of the electricity-generating glass (EGP) devices or electricity-generating glass (EGP) module. The internal electrical connections are then translated to typical MC-4 connections, as shown in
An exemplary embodiment of the invention is directed to an Electrical Junction Box Electron Transfer Device (E-JBTD) including one or more electrical connectors, and a non-conductive dielectric insulating material protecting the one or more electrical connectors. The Electrical Junction Box Electron Transfer Device (E-JBTD) can include one or more single-contact electrical connectors electrically connected to the one or more electrical connectors. The one or more single-contact electrical connectors can include MC-4 connections.
Another exemplary embodiment of the invention is directed to a system including an electricity-generating glass (EGP) device, and an Electrical Junction Box Electron Transfer Device (E-JBTD) on the electricity-generating glass (EGP) device. The Electrical Module Junction Box Transfer Device (E-JBTD) can be integrated into an edge of the electricity-generating glass (EGP) device.
Other features and advantages of the present invention will become apparent to those skilled in the art upon review of the following detailed description and drawings.
These and other aspects and features embodiments of the present invention will be better understood after reading the following detailed description, together with the attached drawings, contained herein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention, however, may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Referring now to the drawings, exemplary embodiments of an Electrical Module Junction Box Transfer Device (E-JBTD).
Particularly,
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
This application claims priority under 35 U.S.C. 119(e) of U.S. Provisional Application No. 62/854,276, filed on May 29, 2019, (Attorney Docket No. 7006/0189PR01), the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. § 120.
Number | Date | Country | |
---|---|---|---|
62854276 | May 2019 | US |