1. Technical Field
The present invention relates to an electrical motor that includes a rotor and a stator provided around the rotor to cool the stator by liquid coolant, and to a turbo compressor using the electrical motor.
2. Background Art
Conventionally, known is an electrical motor whose inside is cooled by using liquid coolant (refrigerant) in order to prevent burnouts of coils or insulating materials and thermal deformation of its rotor caused by temperature increase of its stator or its rotor at a long time operation of the electrical motor. A Patent Document 1 (Japanese Patent Application Publication No. 2009-118693) discloses an electrical motor in which refrigerant liquid is supplied to an inside of its rotating cylindrical bottomed rotor. In this electrical motor, the rotor is cooled by vaporization heat of the refrigerant liquid. In addition, a Patent Document 2 (Japanese Patent Application Publication No. 2009-300008) discloses an electrical motor in which a refrigerant supply amount is controlled. In this electrical motor, excessive cooling and lubrication failure caused by mixture of refrigerant liquid into lubrication oil can be prevented by controlling the refrigerant supply amount.
In the above electrical motors, the rotor is cooled, but the stator is not cooled sufficiently. Refrigerant liquid that isn't vaporized at the rotor falls over the stator while it drips down to a drain, and the stator is cooled only by this refrigerant liquid. Especially in the electrical motor disclosed by the Patent Document 1, a coil end on a bottom side of the rotor is cooled only by heat conduction, so that it can't be cooled sufficiently. Therefore, burnout possibility of the electrical motor cannot be resolved.
An object of the present invention is to provide an electrical motor that can cool a coil end(s) of a stator coil sufficiently.
A first aspect of the present invention provides an electrical motor comprising: a motor case; a rotor that is housed in the motor case and rotatable about a rotor shaft; a stator that is provided around the rotor in the motor case and configured by winding a stator coil around a stator core; and a first spray nozzle that is provided in the motor case for spraying liquid coolant toward an inner circumferential surface of the motor case, wherein the stator coil has a first coil end protruded from the stator core along a direction of the rotor shaft, and the first spray nozzle is configured to spread the coolant as mist by splashing the coolant on the inner circumferential surface to make the spread mist over the first coil end.
In the above first aspect, the coolant is sprayed from the first spray nozzle toward the inner circumferential surface of the motor case, and the coolant is splashed on the inner circumferential surface to be spread as mist. The spread mist coolant falls over the first coil end, and cools the coil end by its vaporization heat. Therefore, the first coil end can be cooled more sufficiently than in a case of cooling the coil end by heat conduction, and thereby burnouts possibility caused by temperature increase of the electrical motor can be prevented.
As a result, reliability of the electrical motor can be improved. In addition, the generated mist coolant falls over the first coil end at low speed, so that an insulation coating of the first coil end can be prevented from being damaged.
A second aspect of the present invention provides a turbo compressor for driving an impeller by the electrical according to the above first aspect, wherein an inside of the motor case is segmented into a first chamber located on one side of the rotor and the stator and a second chamber on another side of the rotor and the stator, the first coil end is protruded into the first chamber, the first spray nozzle is provided in the first chamber to spray the coolant into the first chamber, the electrical motor further comprises a gas injection nozzle for injecting high-pressure gas into the second chamber, and the high-pressure gas is the gas coolant compressed by the impeller.
Hereinafter, embodiments will be explained with reference to the drawings. First, an electrical motor 1 (a turbo compressor 20) according to a first embodiment will be explained with reference to
As shown in
The condenser 22 is connected with the compressor 20 via a flow path 25a, and connected with the economizer 26 via a flow path 25b on which an expansion valve (pressure reducer) 23 is provided. Refrigerant gas compressed by the compressor 20 is supplied to the condenser 22 through the flow path 25a. The condenser 22 condenses the compressed refrigerant gas into refrigerant liquid (some remains as refrigerant gas). The refrigerant liquid condensed by the condenser 22 (or refrigerant in a gas-liquid mixed state) is decompressed by the expansion valve 23 through the flow path 25b, and then supplied to the economizer 26.
The economizer 26 is connected with the evaporator 21 via a flow path 25c on which an expansion valve (pressure reducer) 27 is provided, and connected with the compressor 20 via a flow path 25d. The economizer 26 temporarily accumulates the refrigerant liquid (part thereof is refrigerant gas) decompressed by the expansion valve (pressure reducer) 23 on the flow path 25c. Gas-phase component (refrigerant gas) of the refrigerant liquid (gas-liquid mixed state) accumulated by the economizer 26 is supplied to a second compression stage (second impeller) 20b of the compressor 20 via the flow path 25d. On the other hand, liquid-phase component of the refrigerant liquid (gas-liquid mixed state) accumulated by the economizer 26 is decompressed by the expansion valve 27 on the flow path 25c, and then supplied to the evaporator 21.
The evaporator 21 is connected with a first compression stage (first impeller) 20a of the compressor 20 via a flow path 25e. The evaporator 21 evaporates the refrigerant liquid decompressed by the expansion valve 27 on the flow path 25c into refrigerant gas. The refrigerant gas evaporated by the evaporator 21 is supplied to the first compression stage 20a of the compressor 20 via the flow path 25e.
The compressor 20 is connected with the condenser 22 via the flow path 25a, and has the first compression stage 20a and the second compression stage 20b that are explained above. The compressor 20 compresses the refrigerant gas supplied via the flow path 25e by the first compression stage 20a and then discharges it to the flow path 25d, and concurrently compresses the refrigerant gas supplied via the flow path 25d (containing the refrigerant gas discharged from the first compression stage 20a) by the second compression stage 20b and then discharges it to the flow path 25a. The refrigerant gas compressed by the compressor 20 is supplied to the condenser 22 via the flow path 25a. The coolant for air conditioning is cooled by heat-exchanging with the refrigerant at the evaporator 21.
The turbo refrigerator 2 in the present embodiment includes, in addition to the above-explained refrigeration cycle, a cooling system for the electrical motor 1 that utilizes the refrigerant of the refrigeration cycle. The refrigerant liquid (or the refrigerant in a gas-liquid mixed state) condensed by the condenser 22 is supplied to the electrical motor 1 via a flow path 25f. On the flow path 25f, a supply amount of the refrigerant liquid to the electrical motor 1 is controlled by a regulator 24 (such as a flow control valve and an orifice). The refrigerant liquid supplied to the electrical motor 1 cools the electrical motor 1, and then is returned to the evaporator 21 (the refrigeration cycle). In the electrical motor 1, part of the refrigerant liquid circulates around a stator 5 (see
The electrical motor 1 will be explained in detail. As shown in
The motor case 3 is configured of a cylindrical circumferential wall 31, and an end wall 32 and a pass-through wall 33 that close both ends of the circumferential wall 31, respectively. An inner chamber 34 is formed within the motor case 3 (the circumferential wall 31, the end wall 32 and the pass-through wall 33). The stator 5 is fixed with an inner surface of the circumferential wall 31. A support cylinder 32a is protruded from the center of the end wall 32 toward the inner chamber 34. A ball bearing 60A and a labyrinth seal 61A are provided at an end of the support cylinder 32a. On the other hand, a cylindrical hole 33a is formed at the center of the pass-through wall 33. A roller bearing 60B and a labyrinth seal 61B are provided at the cylindrical hole 33a. The ball bearing 60A and the roller bearing 60B supports the rotor shaft 40 rotatably.
The inner chamber 34 is segmented, by the rotor 4 and the stator 5, into a first chamber 34A located on one side (left side in
The stator 5 includes a cylindrical stator core 53 in which plural magnetic steel sheets are stacked and a stator coil 50 wound around teeth of the stator core 53. An insulation coating such as varnish is formed on a surface of the stator coil 50. In addition, the stator coil 50 has a first coil end 51 protruded into the first chamber 34A along an axial direction of the rotor shaft 40, and a second coil end 52 protruded into the second chamber 34B along the axial direction of the rotor shaft 40.
The rotor 4 includes a rotor shaft 40, a cylindrical rotor core 41 in which plural magnetic steel sheets are stacked, and a rotor coil wound around the rotor core 41. The rotor shaft 40 penetrates the rotor core 41, and is fixed with the rotor core 41. In addition, the rotor 4 is disposed within the stator 5, and rotatably supported by the end wall 32 and the pass-through wall 33 with the rotor shaft 40 and the bearings 60A and 60B interposed therebetween. Namely, the stator 5 is provided around the rotor 4 in the motor case 3.
In addition, a refrigerant flow passage 35 is provided in the electrical motor 1. The refrigerant flow passage 35 circulates the refrigerant liquid 8 supplied from outside through the inside of the electrical motor 1. The refrigerant flow passage 35 is configured of a spiral groove formed on the inner circumferential surface 30 of the circumferential wall 31 so as to face the stator core 53. The stator core 53 is cooled by the refrigerant liquid 8 while the refrigerant liquid 8 flows through the refrigerant flow passage 35.
As shown in
As shown in
An attachment position to the motor case 3, the inclination angle A1 and the spread angle A2 of the first spray nozzle 7a are set according to a size of the electrical motor 1 and an injection pressure of the refrigerant liquid 8 so that the refrigerant liquid 8 is spread to a wide range and refrigerant mists (refrigerant droplets) 8 splashed by the internal circumferential surface 30 falls over an entire of the first coil end 51.
Cooling operations will be explained. First, cooling by the refrigerant flow passage 35 is explained with reference to
Inner pressure of the second chamber 34B rises due to the refrigeration gas 8 generated by vaporization of the refrigerant liquid 8, and the refrigeration gas 8 transfers to the low-pressure first chamber 34A through a gap between the stator core 53 and the rotor core 41. Note that part of the refrigerant liquid (refrigerant mist) 8 discharged into the second chamber 34B and the refrigerant liquid 8 accumulated at a lower portion in the second chamber 34B also transfers to the first chamber 34A through the gap between the stator core 53 and the rotor core 41. The rotor 4 (and the stator 5) is cooled by the refrigerant 8 along with the above-explained transfer of the refrigerant 8 from the second chamber 34B to the first chamber 34A.
Next, cooling by the first spray nozzle 7a is explained. As explained above, the second coil end 52 in the second chamber 34B (and the stator 5) is cooled by the refrigerant 8 flowing through the refrigerant flow passage 35. On the other hand, the first spray nozzle 7a is provided in order to cool the first coil end 51 in the first chamber 34A by the refrigerant liquid 8. When the refrigerant liquid 8 is sprayed out from the injection port 71 of the first spray nozzle 7a toward the inner circumferential surface 30 of the first chamber 34A, the refrigerant liquid 8 is splashed by the inner circumferential surface 30 and then spread to a wide range as the refrigerant mist (refrigerant droplets) 8.
A surface pattern of a casting mold for the die-cast motor case 3 is transferred to the inner circumferential surface 30, so that the inner circumferential surface 30 has fine asperity. Therefore, the inner circumferential surface 30 can splash the refrigerant liquid 8 preferably as the refrigerant mist (refrigerant droplets) 8. The spread refrigerant mist 8 falls downward due to gravity to fall over the first coil end 51 and is vaporized by heat of the first coil end 51, and thereby cools the first coil end 51 by its vaporization heat. Note that, in order to make the refrigerant mist 8 fallen over the first coil end 51 efficiently, it is preferable that the first spray nozzle 7a (the injection port 71) is located at almost a middle position of a protrusion length of the first coil end 51.
In addition, the refrigerant liquid 8 is sprayed along a rotational direction of the rotor 4 (counter-clockwise direction in
According to the electrical motor 1 in the present embodiment, the refrigerant mist 8 is generated by spraying the refrigerant liquid 8 from the first spray nozzle 7a toward the inner circumferential surface 30 to cool the first coil end 51 directly by the refrigerant mist 8. Therefore, the first coil end 51 can be cooled more sufficiently than a conventional way in which a coil end is cooled mainly by heat conduction. As a result, burnouts and seizures caused by temperature increase of the electrical motor 1 can be prevented.
In addition, the refrigerant mist 8 reaches the first coil end 51 at low speed. Therefore, the insulation coating of the first coil end 51 can be prevented from being damaged. Further, the refrigerant mist 8 can be spread to a wide range by splashing the refrigerant liquid 8 by using the inner circumferential surface 30, so that an entire of the first coil end 51 can be cooled by the refrigerant mist 8. Furthermore, since the refrigerant liquid 8 is sprayed from the injection port 71 formed as a slit and spread like a fan, the refrigerant mist 8 can be made spread to a wide range along the protrusion direction of the first coil end 51 and thereby the first coil end 51 can be cooled efficiently.
Note that, in the above embodiment, a first chamber in which the first spray nozzle 7a is provided for generating the refrigerant mist 8 to be fallen over the first coil end 51 is the first chamber 34A on an output side of a drive force of the electrical motor 1 (a side on which the rotor shaft 40 is extended out from the motor case 3: left side in
In addition, in the above embodiment, the refrigerant liquid 8 from the refrigerant flow passage 35 is discharged into the chamber (second chamber 34B) on an opposite side to the output side of the electrical motor 1. However, the refrigerant flow passage 35 may be formed so that the refrigerant liquid 8 is discharged into the chamber 34A on the output side of the electrical motor 1. In this case, since the coil end 51 in the chamber 34A on the output side is cooled by the refrigerant liquid 8 from the refrigerant flow passage 35, it is preferable that the first spray nozzle for generating refrigerant mist to be fallen over the coil end 52 (i.e. the chamber 34B is the first chamber).
Next, an electrical motor 1 (a turbo compressor 20) according to a second embodiment will be explained with reference to
As explained above, a flow of the refrigerant 8 (refrigerant gas and refrigerant liquid) from the second chamber 34B to the first chamber 34A is generated in the inside of the motor case 3, and the rotor 4 (and the stator 5) is cooled by the flow. In the present embodiment, high-pressure gas is injected into the second chamber 34B in order to increase an amount of the flow of the refrigerant 8. In the present embodiment, as shown in
As shown in
Pressure in the second chamber 34B is made high by the injection of the high-pressure refrigerant gas 8 into the second chamber 34b, so that the flow of the refrigerant 8 (refrigerant gas and refrigerant liquid) from the second chamber 34B to the first chamber 34A is made predominant. By making the flow of the refrigerant predominant, a heat-exchanging amount between the refrigerant 8 and the rotor 4 (and the stator 5) increases and thereby the cooling performance increases.
Since configuration of the gas injection nozzle 9 is basically identical to configuration of the above-explained first spray nozzle 7a, its detailed explanations are omitted here. However, the first spray nozzle 7a injects refrigerant liquid, but the gas injection nozzle 9 injects high-pressure gas (high-pressure refrigerant gas). Therefore, a cross-sectional area of an inner flow passage and a shape of an injection port of the gas injection nozzle 9 are optimized for high-pressure gas. For example, the injection port 71 of the first spray nozzle 7a is formed as a slit in order to spread refrigerant liquid to a wide range. On the other hand, since an injection of high-pressure gas from the gas injection nozzle 9 aims to made refrigerant flow in the second chamber 34B predominant, the injection port of the gas injection nozzle 9 may not be formed as a slit but as a circular hole.
In addition, in the present embodiment, for further improvements of the cooling performance, the second spray nozzle 7b having an identical configuration to that of the first spray nozzle 7a is provided in order to increase the refrigerant mist 8 contained in the flow of the refrigerant 8 from the second chamber 34B to the first chamber 34A. Since vaporization heat becomes increased when the refrigerant mist 8 contained in the flow of the refrigerant 8 increases, the heat-exchanging amount between the refrigerant 8 and the rotor 4 (and the stator 5) further increases and thereby the cooling performance further improves.
As shown in
Here, the second spray nozzle 7b also spray the refrigerant liquid 8 along the rotational direction of the rotor 4 (counter-clockwise direction in
Further, the gas injection nozzle 9 also injects the refrigerant gas 8 (high-pressure gas) along the rotational direction of the rotor 4. Therefore, the rotating flow is made predominant, and thereby the generated refrigerant mist 8 is further agitated. As a result, the refrigerant mist 8 becomes easily contained in the flow of the refrigerant 8 from the second chamber 34B to the first chamber 34A further. In addition, since the refrigerant mist 8 is spread further uniformly, an entire of the rotor 4 can be cooled. Note that the refrigerant 8 discharged from the refrigerant flow passage 35 is also spread due to the predominant rotating flow by the gas injection nozzle 9 and thereby the second coil end 52 can be also cooled effectively.
Here, it is preferable that the gas injection nozzle 9 is configured to inject the refrigerant gas 8 (high-pressure gas) toward an outside from an end edge of the second coil end 52 (outer side from its protrusion: right side in
In addition, the gas injection nozzle 9 is configured to inject the refrigerant gas 8 (high-pressure gas) toward the outside from the end edge of the second coil end 52, so that prevented can be damages of the insulation coating of the second coil end 52 caused by the refrigerant gas 8 (high-pressure gas) injected from the gas injection nozzle 9. Note that, in the present embodiment, the gas injection nozzle 9 itself is disposed outside the end edge of the second coil end 52 (at a position of the cross-sectional plane IX-IX in
As explained above, in order to make the generated refrigerant mist 8 fallen over the first coil end 51 efficiently, it is preferable that the first spray nozzle 7a is located at almost the middle position of a protrusion length of the first coil end 51. On the other hand, principal purpose of the second spray nozzle 7b is spreading the generated refrigerant mist 8 in the second chamber 34B in order to make it contained into the flow of the refrigerant 8 from the second chamber 34B to the first chamber 34A. Therefore, in the present embodiment, the second spray nozzle 7b is disposed, along the axial direction of the rotor shaft 40, at the same position as the gas injection nozzle 9 (at the position of the cross-sectional plane IX-IX in
However, since the refrigerant mist 8 generated by the second spray nozzle 7b can be sufficiently spread into the second chamber 34B by being splashed by the inner circumferential surface 30, it may be disposed inside the end edge of the second coil end 52. In addition, part of the refrigerant mist 8 generated by the second spray nozzle 7b may be made fallen over the second coil end 52 to cool the second coil end 52.
Note that, in the present embodiment, the refrigerant gas 8 as high-pressure gas injected from the gas injection nozzle 9 is taken from a downstream side of the second compression stage (second impeller) 20b of the compressor 20. However, if pressure is sufficient, it may be taken from a downstream side of the first compression stage (first impeller) 20a (i.e. from an upstream side of the second compression stage 20b).
Note that the present embodiment includes all the configurations of the first embodiment, and all the advantages achieved by the first embodiment can be achieved by the present embodiment. Further, according to the present embodiment, pipes for the gas injection nozzle 9 and the second spray nozzle 7b increases, but the cooling performance (especially, cooling of the rotor 4) can be further improved. It may be determined in consideration of heat generation property of the electrical motor 1 whether or not the gas injection nozzle 9 and the second spray nozzle 7b are required.
Number | Date | Country | Kind |
---|---|---|---|
2011-159641 | Jul 2011 | JP | national |
The present application is a Continuation Application of PCT International Application No. PCT/JP2012/067914 (filed on Jul. 13, 2012), which is based upon and claims the benefit of priority from Japanese Patent Application No. 2011-159641 (filed on Jul. 21, 2011), the entire contents of which are incorporated herein with reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/067914 | Jul 2012 | US |
Child | 14155984 | US |