This invention relates to the field of electric power outlets, and more particularly to a method and apparatus for an electrical power outlet having a pair of three-prong power receptacles configured with their ground sockets oriented outward, while retaining a standard wiring configuration.
Residential electrical circuitry originally used a “two-pole, two-wire, two-prong” configuration with each receptacle having a hot slot (also called the phase, line, or hot slot), and a neutral/ground slot. These receptacles did not have a separate equipment-grounding mechanism or connection. One pole is called the hot, phase, line, or hot wire, and the other pole is called the neutral. In the two-pole configuration, the neutral also served as a ground. A receptacle is a device with female contacts that is part of an outlet typically installed in a wall or on equipment, and which is intended to establish electrical connection with, and provide power to, an inserted plug. A wall-mounted duplex outlet will have two receptacles. A plug is a device with male blades which, when inserted into a receptacle, establishes connection between the conductors of the attached flexible cord and the conductors connected to the receptacle. With the original “two-pole, two-wire” scheme, the only grounding point was at the service entrance, where the neutral (white) conductor was grounded. At some point, the NEMA (National Electrical Manufacturers Association) configuration 1-15R required that the receptacle slot for the neutral wire (typically having white-colored insulation) be longer than the slot for the hot wire (typically having black- or red-colored insulation), and that the blade of the neutral wire on the plug be wider than the hot blade, in order that it could not be inserted into the shorter hot slot. This enables certain types of equipment, like power-supply transformers and home appliances, to have their external metal parts or casing grounded through the white neutral wire connection. Such equipment uses a polarized plug where the neutral plug blade is wider than the hot plug blade, ensuring that it can only be inserted into a NEMA 1-15R configuration receptacle with the correct orientation.
Many modern power outlets and power plugs now have what is termed a two-pole, three-wire, three-prong design, which in the U.S., is typically used for conventional 120 V.A.C. (volts alternating current) convenience power outlets. Such power outlets typically include two receptacles and are known as duplex outlets. These configurations provide a separate ground wire from the receptacle that is typically connected to neutral and ground/earth at the residential circuit-breaker box. A modern three-prong power plug has three male blades or prongs that are typically nickel plated, tin, or brass, and that are inserted into three respective female slots or sockets of a wall receptacle. The prongs of the power plug and the female slots or sockets of the wall-mounted power receptacle vary in terms of size and shape based upon the purpose that they serve. One of the prongs, (the “ground prong”) is typically longer than the other two prongs, and in some embodiments is circular, semi-circular, or rounded in shape. Another of the prongs, the (“neutral prong”) has a blade that is slightly wider than the third prong's blade (the “hot prong”). Many power plugs are still made with only the hot and -neutral prongs (“two prong power plugs”), and omit the ground prong. Such two-prong plugs are often polarized, with the neutral blade wider than the hot blade. A three-socket power receptacle will accept either two-prong or three-prong power plugs.
Corresponding to the three male prongs of the plug are three female slots or sockets (i.e., the hot socket, neutral socket, and ground socket) of the power receptacle into which the plug's prongs are inserted. The power receptacle's sockets are designed to accommodate the size and length variations and allow either two-prong or three-prong power plugs to be inserted, while preventing or making it difficult to insert a two-prong plug the wrong way (e.g., with the neutral prong of the plug inserted into the hot socket of the power receptacle). The neutral socket of the power receptacle and the neutral prong of the plug are wider than the hot socket that accepts the hot prong, such that the neutral plug is too wide to be inserted into the hot socket. As an additional safety feature, the ground prong of the plug is typically made longer than either the hot prong or the neutral prong, in order that it makes contact with the power receptacle first. Correspondingly, the ground socket that accepts the ground prong is deeper than the other two sockets so as to accommodate the increased length of the ground prong.
One reason for the three-prong design, and in particular the use of a ground prong, is to provide an electrical ground that can be connected to the outside of a device, or its metal frame or chassis, such that a person who is standing on or otherwise connected to ground will not get a shock from the device if the hot power voltage or a portion thereof is connected to the device frame by accident damage, aged components, insulation degradation, impact, or wiring mistake. If the person and the outside of the device are both at a ground voltage, there will be no current flow when the person is touching the outside of the device.
Another reason for the three-prong design relates to the need to dissipate and/or direct ambient and non-ambient electrical charges. A system of interconnected electrical circuits, such as those found in the typical residential house, acts like a capacitive antenna that can either build up and/or conduct ambient and non-ambient electrical power found in the atmosphere. For example, when a house is struck by lightning, absent the use of various ground prongs, the electrical energy of the lightening could be routed through all the ungrounded electrical circuits including appliances connected to these circuits. This electrical energy would destroy many of these ungrounded appliances. One solution to this problem is to provide a ground path to allow this electricity to be dissipated into the earth or ground.
Yet another reason behind the three-prong design, when mounted with the ground socket uppermost, may be to lessen the likelihood that a circuit could be formed directly across the hot and neutral prongs. Namely, the ground prong can act as a barrier or guard that prevents a piece of conductive material (for example, a cookie sheet) from slipping into the space between the power plug and power receptacle and forming a short circuit between the hot and neutral prongs. Were such a short circuit to occur, the high current can vaporize the metal prongs, which could cause a fire or other damage.
Power receptacles are typically set in a dual or duplex outlet configuration whereby two power receptacles are stacked one on top of one another. In most of these duplex-outlet power-receptacle configurations, the power receptacles sockets are arranged such that the hot, neutral, and ground sockets have the same orientation, and wherein each feature of the upper receptacle is approximately 39 millimeters above the corresponding feature of the lower receptacle. Further, typically, the screw connectors for the neutral and ground wires are all on one side of the outlet device, and the screw connectors for the hot wire(s) are on the opposite side of the device. Further still, many companies and electrical inspectors recommend that conventional duplex outlets be installed having the hot and neutral slots, which are set parallel to each other, oriented vertically, with the hot slot on the left and the neutral slot on the right, and the ground socket of each receptacle set above these parallel slots, in what is called a ground-up orientation or configuration. Some electricians and homeowners prefer to have the ground socket below the hot and neutral sockets (with the hot slots on the right and the neutral slots on the left), in what is called a ground-down orientation or configuration.
What is needed is an improved outlet design that retains many of the characteristics of conventional outlet designs, while providing improved usability and/or safety characteristics.
The present invention provides a method and apparatus to address the problem of attempting to simultaneously utilize two large power plugs with transformers and/or converters simultaneously with a single duplex power outlet. One advantage of the present invention is that it allows for the utilization of the conventional three-prong power plug. Additionally, some embodiments of the present invention retain identically the external characteristics of the standard duplex power outlet such as, size, shape, and the standard wiring configuration having the external portion of the neutral conducting buss (and both of its silver-colored screws) located on one side of the duplex power outlet, and the external portion of the hot conducting buss (and both of its brass-colored screws) located on the opposite side of the duplex power outlet. This allows electricians and others who are skilled in the art to install this invention without having to be retrained in a method of installation.
In some embodiments, the present invention provides a method for making a duplex electrical outlet, including configuring the outlet to have a first power receptacle and a second power receptacle both having their receptacle faces oriented to the front of the outlet, each power receptacle having a hot socket, a neutral socket, and a ground socket configured to receive a two-pronged or three-pronged plug having a hot prong, a neutral prong, and, optionally, a ground prong. Additionally, this method includes orienting the first power receptacle such that its ground socket is further from the second power receptacle than its hot socket and neutral socket, and orienting the second power receptacle such that its ground socket is further from the first power receptacle than its hot socket and neutral socket. It also includes electrically connecting the hot socket of the first power receptacle to the hot socket of the second power receptacle with a first conducting buss configured to connect to external wiring only along a first side of the outlet, electrically connecting the neutral socket of the first power receptacle to the neutral socket of the second power receptacle with a second metal buss or conducting buss configured to connect to external wiring only along a second side of the outlet opposite to the first side of the outlet, and electrically connecting the ground socket of the first power receptacle to the ground socket of the second power receptacle with a third metal buss or ground buss. In some embodiments, the ground buss is configured to connect to external wiring also along the second side of the outlet.
In some embodiments, this method further includes providing a threaded screw receiver substantially centered on a recessed surface between first power receptacle and the second power receptacle, and spacing the first power receptacle from the second power receptacle such that they accommodate a standard cover plate having two power receptacle openings and one screw opening. In some embodiments, this method additionally includes providing substantially identical back portions and conductor configurations for each of at least two different front receptacle face configurations, the two different front receptacle face configurations including a first front-receptacle face configuration having a substantially planar rectangular raised front receptacle face having both power receptacles therein, and a second front-receptacle face configuration having two separated raised front-receptacle face portions each shaped as a truncated circle. In some embodiments, this method additionally includes providing substantially identical back portions and conductor configurations for each of at least two different front receptacle face configurations, the two different front receptacle face configurations (in some embodiments, each having two separated raised front-receptacle face portions each shaped as a double-truncated circle, while other embodiments use a Decora™-type front-receptacle face), but with a third front-face-plate configuration having parallel hot and neutral slots (typically used for circuits up to 15 amps), and a fourth front-receptacle face configuration having perpendicular hot and neutral slots (typically used for circuits up to 20 amps). In still further embodiments, this method further includes connecting a hot conductive buss to at least a first and a second line screw each providing a clamp mechanism that clamps electrical wiring to the hot conductive buss that connects the first hot screw to the hot socket of the first power receptacle and connects the second hot screw to the hot socket of the second power receptacle, and having a removable link portion (break-away tab) between the first screw and the second screw.
In some embodiments, a duplex power outlet is configured to mount in a standard wall box where each of two power receptacles have a hot socket, a neutral socket and a ground socket wherein at least one of the ground sockets is in a ground-up position relative to the ground socket of a second power receptacle. In some embodiments, a duplex power outlet is provided, wherein the two power receptacles are configured such that there is an upper and lower power receptacle each having a receptacle face oriented to the front of the outlet, each power receptacle having a hot socket, a neutral socket, and a ground socket configured to receive a three-prong power plug having a hot prong, a neutral prong, and a ground prong.
In still other embodiments, a duplex power outlet is disclosed wherein the first (e.g., upper in the figures) power receptacle is configured such that ground socket is further from the second (e.g., lower in the figures) power receptacle than its hot socket and neutral sockets, the lower power receptacle is oriented such that its ground socket is further from the first power receptacle than its hot socket. and neutral sockets, the hot socket of the first power receptacle and the hot socket of the lower power receptacle are connected via a first conducting buss to a circuit, the neutral socket of the first power receptacle and neutral socket of the lower power receptacle are connected via a second conducting buss to a circuit, and the ground socket of the first and lower power receptacles are connected to a ground circuit. In some embodiments, the wire(s) attached to the conducting buss of the hot socket is/are attached via one or more threaded terminal screws. In some embodiments, a circuit is attached to the conducting buss of the neutral socket wherein the wire(s) is/are attached via one or more threaded terminal screws. In some embodiments, the ground socket of the first and lower power receptacles are connected to a ground circuit via a ground buss and ultimately a threaded grounding screw. In some embodiments, the apparatus further includes a threaded screw receiver substantially centered on a recessed surface plate between first power receptacle and the second power receptacle, and a standard duplex power outlet face. In still other embodiments, the standard duplex power outlet receptacle face is disclosed, wherein the receptacle face has a planar rectangular raised front receptacle face, and a second receptacle face configuration is disclosed having two separated raised front-receptacle face portions each shaped as a truncated circle.
In some embodiments, the standard duplex power outlet receptacle face is disclosed, wherein the first power receptacle is an upper power receptacle, and the second power receptacle is a lower power receptacle. In some embodiments, the upper power receptacle may be configured at a slant or angle relative to the lower power receptacle, which has its hot and neutral slots in a conventional vertical orientation above its ground socket; similarly, the lower power receptacle may be configured at an angle or slant relative to the upper receptacle having its hot and neutral slots in a conventional vertical orientation under its ground socket. In some embodiments, both receptacles are configured hot and neutral slots at a slant to the vertical.
In some embodiments, the apparatus includes a first hot conducting buss and a second neutral conducting buss, with the first hot conducting buss oriented above the second neutral conducting buss. In some embodiments, the first hot conducting buss includes two (2) sets of three (3) gripping fingers. Moreover, in some embodiments, the second neutral conducting buss includes two (2) sets of three (3) gripping fingers. In still other embodiments, the apparatus further includes the second neutral conducting buss oriented above the first hot conducting buss. The apparatus, in some embodiments, has a first hot conducting buss and the second neutral conducting buss both having an upper and lower portion. The upper and lower portions can be configured such that these upper portions are at an angle. In some embodiments, the apparatus further includes a body with isolating compartments into which are placed the hot and neutral conducting busses and associated sets of gripping fingers. The apparatus additionally includes a ground buss which also constitutes a yoke and attached to the ground buss is a grounding screw and clamp nut.
Some embodiments include a structure containing a means for simultaneously utilizing a first power plug in a ground-up configuration and a second power plug in a ground-down configuration, a means for receiving the first and second power plugs, a means for attaching one or more circuits to the apparatus, a means for receiving electrical power through the circuits, a means for supplying this electrical power to the first and second power plugs, a means for attaching a ground to the apparatus, and a means for attaching the apparatus to a standard wall box is disclosed.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention. Further, the leading digit(s) of reference numbers appearing in the Figures generally corresponds to the Figure number in which that component is first introduced, such that the same reference number is used throughout to refer to an identical component which appears in multiple Figures. Signals and connections may be referred to by the same reference number or label, and the actual meaning will be clear from its use in the context of the description.
For the purpose of this description, the phrase “power receptacle” is synonymous with the phrases electrical-power receptacle, main power receptacle, plug-in, outlet, power receptacle, female power prong, or any other phrase denoting an apparatus designed to provide access to electrical power using a plurality of (e.g., three) slots or sockets.
One problem with conventional duplex power receptacles lies in the both-ground-down or both-ground-up configuration of the ground sockets in the two receptacles. This configuration creates problems when using more than one larger power plug (“large power plug”) such as those with a transformer/converter built into them, as used with hair dryers, battery chargers, etc., or with power plugs with cords connected at 90 degrees to the power plug (typically, the cord is directed in the direction of the ground socket of the plug). A conventional duplex power receptacle will not accommodate two such large power plugs or transformer power plugs, or two power plugs with their cords connected at 90 degrees to the power plug.
While, for many years, many manufacturers have built this same type of conventional duplex power receptacle as it accommodates most A.C. power plug applications, there has not been a duplex power receptacle for wall mounting that is manufactured to address the large-power-plug problem described above.
The phrase “power plug” is meant to be synonymous with the phrase “mains plug” and includes such standardized power plugs as the: NEMA 5-15P, NEMA 5-20P, NEMA 5-50P, NEMA 6-15P, NEMA 6-50P, NEMA 14-50P, BS 546, BS 1363, CEE 7/4, SI 32, AS 3112, GB 2099.1-1996, IRAM 2073, SEV 1011, Afsnit 107-2-D1, or any other power plug that has a three-prong design.
The receptacle face 101, depicted in
The conductive busses 102/102A are illustrated in
The grounding buss 103 depicted in
The body 104 is depicted in
The present invention provides duplex three-prong A.C. receptacle outlets that make specific improvements to receptacle design in comparison to historically problematic areas, which are uniquely designed to allow two larger-than-standard plugs, or plugs with their electrical cords arranged at 90 degrees to the plug (where the cord leaves the plug parallel to the wall towards the ground-socket end of the receptacle), to be plugged in to one duplex outlet at the same time. This result is not possible with a conventional receptacle, since the larger transformers or plugs inserted into one receptacle block use of the other receptacle. In the duplex arrangement described by the present invention, the receptacles are arranged in an opposing or reverse orientation, one to the other, in contrast to using the same orientation as with a conventional receptacle. Each receptacle contains a hot slot, a hot-wire-reception screw, a neutral slot, a neutral-wire-reception screw, a ground socket, a ground-wire-reception screw (which is shared, in some embodiments) and a grounded mounting plate. The hot slots and the neutral slots arranged in reverse directions (left-to-right vs. right-to-left) in the upper relative to the lower outlet, and the ground sockets are in opposite orientations (at the top for the upper receptacle, and at the bottom for the lower receptacle). In some embodiments, the standard orientation (i.e., substantially identical that of a conventional receptacle) of wire-reception screws is maintained for maintaining convention and for safety reasons. In some embodiments, the hot-wire-reception screws are arranged such that both are on the same side of the receptacle in near proximity to one of the sockets they service. Likewise, both neutral wire reception screws are arranged on the same side of the receptacle, opposite that of the hot-wire-reception screws. The electrical polarities are kept apart to avoid short circuit of hot to neutral. In order to support the reversed contact orientation of the outlets, the internal routing of the electrical busses provide connections that cross the receptacle for one or the other receptacle. In some embodiments, the present invention acknowledges and provides a method, apparatus, and means for addressing the aforementioned problem including allowing for two large power plugs, transformers, or converters, or two plugs with their cords at 90 degrees to the plug or any combination of these to be configured in a stacked arrangement. The present invention, in some embodiments, also provides an apparatus, method and means for plugging in standard power plugs (i.e., those with only two prongs) in a stacked, duplex power receptacle arrangement. “Stacked” is a relative term indicating a vertical installation (as shown in the figures). Any of the embodiments shown and described may be, installed horizontally without impacting their ability to service the described plug arrangements. In some embodiments, the above described problem of not being able to connect more than one large power plug is solved by changing the locations of the hot, neutral and ground sockets of the upper power receptacle such that these sockets are configured to be the reverse of the socket configuration disclosed by the bottom power receptacle. In this configuration, the ground sockets are located in the upper most and lower most positions of each individual power receptacle in the duplex power receptacle configuration. Moreover, in some embodiments, the hot and neutral sockets of the upper power receptacle are the reverse of the lower power receptacle such that the neutral socket of the upper power receptacle is located above the hot socket of the lower power receptacle, and the hot socket of the upper power receptacle is located above the neutral socket of the lower power receptacle. Put another way, in some embodiments, the hot socket and neutral socket of the lower power receptacle are located in the opposite location of the upper power receptacle in the duplex power receptacle. In some embodiments, the present invention maintains many of the characteristics of the conventional duplex power receptacle. For example, the conductive busses are positioned on the same side of the apparatus, as in the conventional duplex power receptacle of
Once the apparatus 200 is operative coupled to an electrical circuit, as described above, the power receptacles (i.e., lower 230 and upper 231) are free to be used to provide electrical power to a power plug. Given the ground-up orientation of the upper power receptacle 231, one may use more than one large power plug containing a transformer and/or converter.
In some embodiments, the apparatus 200 shares some of its attributes with the conventional duplex power outlet disclosed in
In some embodiments, the apparatus 200 is distinct from conventional duplex power outlets, such as those disclosed in
In some embodiments,
The body 217 disclosed in
In some embodiments, it might be more advantageous to configure a lower power receptacle 421 such that it is at an angle other than 90 degrees to the upper power receptacle 422. Again, in some embodiments, this determination could be based upon empirical testing of the relative effectiveness of orienting the upper power receptacle to one angle verses another.
In some embodiments, both lower portions (i.e., reference numbers 404, 405) and upper portions (i.e., reference numbers 408, 409) of the conductive busses have four (4) sets of three (3) gripping fingers 407. Additionally, depicted are two (2) break away tabs 421.
As shown above in the discussion regarding
Attached to the grounding buss 535 of apparatus 500, via a fastening means such as a rivet, screw, or adhesive, is a body 527. Molded into this body 527 are various compartments used to isolate the various conducting busses, power supply busses and gripping fingers that correspond to hot, neutral and ground prongs. These compartments are numbers 518, 519, 550, 551, 555, and 553. Compartment 518 provides an isolated area for the gripping prongs 536 that attach to both the ground buss 535 and operatively couple to the ground prong of the plug when the power plug is inserted into the power receptacle. Compartment 519 provides an isolated area for the lower portion of conducting buss 526A, its associated gripping fingers 513, and provides a structure for securing the hot prong when a power plug is inserted into the power receptacle. Compartment 550 provides an isolated area for the lower portion 537 of conducting buss 526, its associated prong 513, and provides a structure to secure the neutral prong of the power plug. Compartment 551 provides an isolated area for a second set of gripping prongs 536 that attach to both the ground buss 535 and operatively couple to the ground prong, when the power plug is inserted into the power receptacle. Compartment 555 provides an isolated area for the upper portion 515 of conducting buss 526, its associated gripping prongs 513, and provides a structure that allows for the neutral prong of the power plug to be inserted. Compartment 553 provides an isolated area for upper portion 522 for conducting buss 526A, its associated gripping prongs 513, and provides the necessary structure to allow for the hot prong to be inserted into the apparatus 500. Additionally, an opening 554 is for a screw to affix an outlet cover plate.
Inserted into the body 527 of apparatus 500 and the compartments disclosed therein are conductive busses 526, and 526A. Conductive buss 526 corresponds to the neutral prong openings 508 and 558. The conductive buss 526 has a power supply bus 507, gripping prongs 513, two (2) terminal screws 510, break-away tab 516, a lower portion 511 and an upper portion 515. Similarly, conductive buss 526A has a power supply bus 507A, gripping prongs 513, two (2) terminal screws 510, break-away tab 516, a lower portion 537 and an upper portion 522. Conductive buss 226A corresponds to the hot prong openings 506 and 538.
Attached over the body 527 of apparatus 500 is a receptacle face 503. Contained within this receptacle face are the openings for an upper power receptacle 530 disclosing hot and neutral prong openings (i.e., reference numbers 506, 508) that are oriented in a manner opposite that of the upper, conventional, power receptacle 531. Moreover, the opening for the ground prong 504 is oriented in a manner described above as a ground-down configuration. The upper power receptacle 531 discloses a neutral prong opening 558, hot prong opening 538 and a ground prong opening 514 in a ground-up configuration. This receptacle face is secured to the body 527 via fastening means such as a screw, rivet, adhesive, or some other fastening means.
In some embodiments, the present invention includes a method for making a duplex electrical outlet, including configuring the outlet to have a first power receptacle and a second power receptacle both having a receptacle face oriented to the front of the outlet, each power receptacle having a hot socket, a neutral socket, and a ground socket configured to receive a three-pronged plug having a hot prong, a neutral prong, and a ground prong, respectively. Additionally, this method includes orienting the first power receptacle such that its ground socket is further from the second power receptacle than its hot socket and neutral socket, orienting the second power receptacle such that its ground socket is further from the first power receptacle than its hot socket and neutral socket, electrically connecting the socket of the first power receptacle to the hot socket of the second power receptacle with a first metal buss configured to connect to external wiring only along a first side of the outlet, electrically connecting the neutral socket of the first power receptacle to the neutral socket of the second power receptacle with a second metal buss or conducting buss configured to connect to external wiring only along a second side of the outlet opposite to the first side of the outlet, and electrically connecting the ground socket of the first power receptacle to the ground socket of the second power receptacle with a third metal buss or ground buss configured to connect to external wiring along the second side of the outlet.
In some embodiments, this method further includes providing a threaded screw receiver substantially centered on a recessed surface between first power receptacle and the second power receptacle, and spacing the first power receptacle from the second power receptacle such that they accommodate a standard cover plate having two power receptacle openings and one screw opening.
In some embodiments, this method additionally includes providing substantially identical back portions and conductor configurations for each of at least two different front receptacle face configurations, the two different front receptacle face configurations including a first front-receptacle face configuration having a substantially planar rectangular raised front receptacle face having both power receptacles therein, and a second front-receptacle face configuration having two separated raised front-receptacle face portions each shaped as a truncated circle. In still further embodiments, this method further includes connecting a hot conductive buss to at least a first and a second hot screw each providing a clamp mechanism that clamps electrical wiring to the hot conductive buss that connects the first line screw to the hot socket of the first power receptacle and connects the second line screw to the hot socket of the second power receptacle.
In some embodiments, a duplex power receptacle is configured to mount in a standard wall outlet box, and to be wired to conventional in-wall wiring, where each of two power receptacles have a hot socket, a neutral socket and a ground socket where in at least one of the ground sockets is in a ground-up position relative to the ground socket of a second power receptacle which is in a ground-down position.
In some embodiments, a duplex power receptacle is provided, wherein the two power receptacles are configured such that there is an upper and lower power receptacle each having a receptacle face oriented to the front of the outlet, each power receptacle having a hot socket, a neutral socket, and a ground socket configured to receive a three-prong power plug having a hot prong, a neutral prong, and a ground prong. In still other embodiments, the dual power receptacle is disclosed wherein the upper power receptacle is configured such that ground socket is further from the lower power receptacle than its hot socket and neutral sockets, the lower power receptacle is oriented such that its ground socket is further from the upper power receptacle than its hot socket and neutral sockets, the hot socket of the upper power receptacle and the hot socket of the lower power receptacle are connected via a first conductive buss to a circuit, the neutral socket of the upper power receptacle and neutral socket of the lower power receptacle are connected via a second conductive buss to a circuit referencing
In some embodiments, a circuit is attached to the conductive buss of the neutral socket wherein the circuit is attached via one or more threaded terminal screws.
In some embodiments, the ground sockets of the upper and lower power receptacles are each connected to a ground circuit via a threaded grounding screw.
In some embodiments, the apparatus further includes a threaded screw receiver substantially centered on a recessed surface plate between first power receptacle and the second power receptacle, and a standard duplex power receptacle face. In still other embodiments, the standard duplex power receptacle face is disclosed, wherein the receptacle face has a planar rectangular raised front receptacle face, and a second receptacle face configuration is disclosed having two separated raised front-receptacle face portions each shaped as a truncated circle. In some embodiments, the standard duplex power receptacle face is disclosed, wherein the first power receptacle is an upper power receptacle, and the second power receptacle is a lower power receptacle. In some embodiments, the upper power receptacle may be configured at an angle relative to the lower power receptacle or the upper at an angle relative to the lower.
In some embodiments, the apparatus includes a first hot conductive buss, and a second neutral conductive buss, with the first hot conductive buss oriented above the second neutral conductive buss.
In some embodiments, the first hot conductive buss includes two sets of three gripping prongs. Moreover, in some embodiments, the second neutral conductive buss includes two sets of three gripping prongs. In still other embodiments, the apparatus further includes the second neutral conductive buss oriented above the first hot conductive buss.
The apparatus, in some embodiments, has a first hot conductive buss and the second neutral conductive buss both having an upper and lower portion. The upper and lower portions can be configured such that these upper portions are at an angle.
In some embodiments, the apparatus further includes a body with isolating compartments into which are placed the hot and neutral conducting busses and associated gripping prongs. The apparatus additionally includes a ground buss and attached to the ground buss is a grounding screw, ground tab, a yoke, and clamp nut.
In some embodiments, a structure is envisioned containing a means for simultaneously utilizing a first power plug in a ground-up configuration and a second power plug in a ground-down configuration, a means for receiving the first and second power plugs, a means for attaching one or more circuits to the apparatus, a means for receiving electrical power through the circuits, a means for supplying this electrical power to the first and second power plugs, a means for attaching a ground to the apparatus, and a means for attaching the apparatus to a standard wall outlet box is disclosed.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Although numerous characteristics and advantages of various embodiments as described herein have been set forth in the foregoing description, together with details of the structure and function of various embodiments, many other embodiments and changes to details will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” and “third,” etc., are used merely as labels, and are not intended to impose numerical requirements on their objects.
This application is a divisional of U.S. patent application Ser. No. 11/868,964 filed Oct. 9, 2007 entitled “ELECTRICAL OUTLET HAVING GROUNDS-OUT RECEPTACLES AND METHOD” (now U.S. Pat. No. 7,785,139), which was a divisional of U.S. patent application Ser. No. 11/094,631 filed Mar. 29, 2005 entitled “METHOD AND APPARATUS FOR A.C. OUTLET HAVING GROUNDS-OUT RECEPTACLES” (now U.S. Pat. No. 7,278,878), which claimed benefit to U.S. Provisional Patent Application No. 60/557,006 entitled “GROUND UP-GROUND DOWN A.C. RECEPTACLE,” filed Mar. 29, 2004 by Raymond Q. Draggie and Scott D. Maxwell, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
824700 | Avery | Jul 1906 | A |
1171914 | Wright | Feb 1916 | A |
D61027 | Benjamin | Jun 1922 | S |
D87428 | Cahn | Jul 1932 | S |
2097346 | Russel et al. | Oct 1937 | A |
D126590 | Lewin | Apr 1941 | S |
D130827 | O'Brien | Dec 1941 | S |
3310770 | Ramsing | Mar 1967 | A |
3327277 | Ramsing | Jun 1967 | A |
3358261 | Gaines et al. | Dec 1967 | A |
3441896 | Hawkins | Apr 1969 | A |
3478295 | Grieshaber | Nov 1969 | A |
3626354 | Banner | Dec 1971 | A |
3908109 | Studebaker | Sep 1975 | A |
4240686 | Kurbikoff | Dec 1980 | A |
D274808 | Schwartz | Jul 1984 | S |
4583799 | Wiley | Apr 1986 | A |
D287358 | Schwartz | Dec 1986 | S |
4740167 | Millhimes et al. | Apr 1988 | A |
4974844 | Richards | Dec 1990 | A |
5078614 | Shotey | Jan 1992 | A |
5087207 | Byrne | Feb 1992 | A |
5109316 | Murphy | Apr 1992 | A |
5135411 | Wiley et al. | Aug 1992 | A |
D356294 | Fladung | Mar 1995 | S |
D360873 | Starec et al. | Aug 1995 | S |
5484299 | Schlessinger | Jan 1996 | A |
5594208 | Cancellieri et al. | Jan 1997 | A |
5601455 | Bagga | Feb 1997 | A |
D379796 | Bagga | Jun 1997 | S |
D382855 | Salmond et al. | Aug 1997 | S |
D402186 | Pearse | Dec 1998 | S |
D404770 | Meade et al. | Jan 1999 | S |
D405763 | Crane et al. | Feb 1999 | S |
5899761 | Crane et al. | May 1999 | A |
D411168 | Rossman et al. | Jun 1999 | S |
5967815 | Schlessinger et al. | Oct 1999 | A |
5998735 | Patterson, Jr. | Dec 1999 | A |
D421966 | Allen et al. | Mar 2000 | S |
6107585 | Gehr | Aug 2000 | A |
6113434 | Pate | Sep 2000 | A |
D434002 | Rossman et al. | Nov 2000 | S |
D434393 | Gehr | Nov 2000 | S |
6200159 | Chou | Mar 2001 | B1 |
D447332 | Pisarevsky | Sep 2001 | S |
6302743 | Chiu et al. | Oct 2001 | B1 |
D450037 | Yu | Nov 2001 | S |
D450038 | Yu | Nov 2001 | S |
6443746 | Yu | Sep 2002 | B1 |
D464329 | Mainiero | Oct 2002 | S |
6638074 | Fisher | Oct 2003 | B1 |
6710274 | Whetzel et al. | Mar 2004 | B2 |
D498213 | Savicki, Jr. et al. | Nov 2004 | S |
6817873 | Gorman | Nov 2004 | B1 |
D500808 | Howard | Jan 2005 | S |
6840648 | Bryant et al. | Jan 2005 | B2 |
6854226 | Cole et al. | Feb 2005 | B2 |
6894221 | Gorman | May 2005 | B2 |
6923663 | Oddsen et al. | Aug 2005 | B2 |
6932624 | Hoopes et al. | Aug 2005 | B1 |
6955559 | Pyrros | Oct 2005 | B2 |
6957012 | He et al. | Oct 2005 | B2 |
6962506 | Krobusek | Nov 2005 | B1 |
6979212 | Gorman | Dec 2005 | B1 |
6986674 | Gorman | Jan 2006 | B1 |
7001211 | Lichtscheidl et al. | Feb 2006 | B2 |
7255596 | Pyrros | Aug 2007 | B2 |
7347724 | Crupi | Mar 2008 | B2 |
7488203 | Leddusire | Feb 2009 | B2 |
7670155 | Ortega | Mar 2010 | B2 |
7785139 | Draggie et al. | Aug 2010 | B1 |
7824196 | Oddsen et al. | Nov 2010 | B1 |
20030226681 | Lindenstraus et al. | Dec 2003 | A1 |
20040256134 | Jolley | Dec 2004 | A1 |
20050054243 | Adams et al. | Mar 2005 | A1 |
20050122666 | Schmieta et al. | Jun 2005 | A1 |
20060057873 | Ortega | Mar 2006 | A1 |
20060131149 | Mattarelli | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60557006 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11868964 | Oct 2007 | US |
Child | 12873241 | US | |
Parent | 11094631 | Mar 2005 | US |
Child | 11868964 | US |