The present disclosure generally relates to electrical plug assemblies. More particularly, the present disclosure relates to electrical plug assemblies for reducing drop damage to prongs.
Electrical prongs are provided in an electrical plug assembly of an electrical device. The electrical prongs are configured to be plugged into an electrical outlet and electrically connect the electrical device to a source of electrical power. Electrical prongs suitably are made of electrically conductive material, as desired for a particular application. For example, in some applications, electrical prongs may be made of stainless steel or the like. Furthermore, conventional, known electrical prongs typically are rigidly mounted into an electrical plug assembly of an electrical device.
For example, and referring to
Electrical devices may be subject to being dropped including falling out of an electrical outlet. In some instances, a dropped electrical device may land on at least one electrical prong. Dropping of an electrical device and landing of the electrical device on at least one electrical prong may entail a not insubstantial impact and may impart a not insubstantial force to the affected electrical prong(s). As is also known, some electrical devices may entail a not insubstantial weight. If some such weighty electrical devices (with rigidly mounted electrical prongs as described above) were dropped as described above, then (as shown in
In an embodiment, an electrical plug assembly includes a rigid housing. A pair of flexible inserts is fixedly disposed in the rigid housing. Each of a pair of rigid sleeves is fixedly disposed in an associated one of the pair of flexible inserts. Each of a pair of electrically-conductive prongs is fixedly disposed in an associated one of the pair of rigid sleeves. Each of a pair of flexible electrical conductor assemblies is movably attached to an associated one of the pair of electrically-conductive prongs.
In another embodiment, an electrical device includes an electrical plug assembly and electrical circuitry. The electrical plug assembly includes a rigid housing. A pair of flexible inserts is fixedly disposed in the rigid housing. Each of a pair of rigid sleeves is fixedly disposed in an associated one of the pair of flexible inserts. Each of a pair of electrically-conductive prongs is fixedly disposed in an associated one of the pair of rigid sleeves. Each of a pair of flexible electrical conductor assemblies is movably attached to an associated one of the pair of electrically-conductive prongs. The electrical circuitry is disposed in the rigid housing and is electrically couplable with the pair of flexible electrical conductor assemblies to receive electrical power from the pair of flexible electrical conductor assemblies.
In another embodiment, a method is provided for fabricating an electrical plug assembly. Each of a pair of electrically-conductive prongs is fixedly disposed in an associated one of a pair of rigid sleeves. Each of the pair of rigid sleeves is fixedly disposed in an associated one of a pair of flexible inserts. Each of a pair of flexible electrical conductor assemblies is movably attached to an associated one of the pair of electrically-conductive prongs. The pair of flexible inserts is disposed in a rigid housing.
The foregoing is a summary and thus may contain simplifications, generalizations, inclusions, and/or omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is NOT intended to be in any way limiting. Other aspects, features, and advantages of the devices and/or processes and/or other subject matter described herein will become apparent in the disclosures set forth herein.
The present disclosure is illustrated and described herein with reference to the various drawings, in which like reference numbers are used to denote like system components/method steps, as appropriate, and in which:
In various embodiments, the present disclosure relates to electrical plug assemblies for reducing drop damage to prongs, electrical devices with an electrical plug assembly for reducing drop damage to prongs, and methods of fabricating an electrical plug assembly for reducing drop damage to prongs.
Given by way of non-limiting overview, in various embodiments, an electrical plug assembly can help to reduce drop damage to prongs of the electrical plug assembly. As will be discussed in detail below, in various embodiments the prongs are disposed in flexible material—as opposed to rigid material as is known in the art—that may be able to help cushionably absorb energy associated with dropping of an electrical device that includes the electrical plug assembly. As such, the prong(s) may be able to flex in any direction—up, down, in, or out—to absorb impact forces if an attached electrical device were to be dropped and land on the prong(s). In such cases, damage to the prong(s) may be reduced or, in some cases, may possibly be substantially preventable.
Referring now to
Now that a non-limiting overview has been presented, details will be set forth by way of non-limiting examples given only by way of illustration.
Referring additionally to
In various embodiments, the flexible inserts 104 may be made from any suitable flexible material, such as rubber, that can help to absorb kinetic energy associated with impacts due to dropping of an electrical device (that is electrically (and physically) connected to the electrically-conductive prongs 108) onto one of the electrically-conductive prongs 108. That is, in various embodiments the flexible inserts 104 are made of flexible material, such as rubber, that can help to cushion the electrically-conductive prongs 108 yet is sufficiently firm to hold the electrically-conductive prongs 108 in the desired alignment.
In various embodiments and as shown in
In various embodiments and as shown in
In various embodiments, ends 127 of the flexible, electrically-conductive wires 126 may be connected to electrical connectors 129. As discussed below, in various embodiments an electrical device (not shown in
In various embodiments and as shown in
In various embodiments, the flexible inserts 104 are held in place on a surface not in contact with the rigid housing 102 with a rigid plate 128. The rigid plate 128 defines a hole 130 therein, and the rigid housing 102 defines a threaded hole 132 therein that is aligned with the hole 130. A screw 134 is inserted through the hole 130, and threadedly engages the threaded hole 132 to urge the rigid plate 128 into contact with the flexible inserts 104. In some embodiments, the electrical connectors 129 may be disposed on the rigid plate 128.
Referring briefly in addition to
Referring additionally to
In various embodiments, the electrical device 150 includes electrical circuitry 152. The electrical circuitry 152 is disposed in the rigid housing 102. It will be appreciated that, in the electrical device 150, the rigid housing 102 is configured to house not only the electrical plug assembly 100 but also the electrical circuitry 152. In addition, in various embodiments, the rigid housing 102 is configured such that the electrical device 150 has a wall-pluggable form factor.
The electrical circuitry is electrically couplable with the flexible electrical conductor assemblies 110 (
It will be appreciated that the electrical circuitry 152 may be configured to affect any type of electrical device as desired for a particular application. Given by way of non-limiting example only by way of illustration and not of limitation, in some embodiments the electrical circuitry 152 may be configured to affect a wireless access point. Given by way of other non-limiting examples only by way of illustration and not of limitation, in some other embodiments the electrical circuitry 152 may be configured to affect a smoke detector, a carbon monoxide detector, emergency lighting, a timer for electrical devices such as lights or the like, a power supply for electronic devices, or any other type of electrical device as desired. It will again be appreciated that the electrical circuitry 152 may be configured to affect any type of electrical device as desired for a particular application, that no limitation to any particular type of electrical device is intended or implied, and that no limitation to any particular type of electrical device is to be inferred.
Following are a series of flowcharts depicting implementations. For ease of understanding, the flowcharts are organized such that the initial flowcharts present implementations via an example implementation, and thereafter the following flowcharts present alternate implementations and/or expansions of the initial flowchart(s) as either sub-component operations or additional component operations building on one or more earlier-presented flowcharts. Those having skill in the art will appreciate that the style of presentation utilized herein (e.g., beginning with a presentation of a flowchart(s) presenting an example implementation and thereafter providing additions to and/or further details in subsequent flowcharts) generally allows for a rapid and easy understanding of the various process implementations.
Referring now to
In various embodiments and referring additionally to
In various embodiments and referring additionally to
In various embodiments and referring additionally to
It will be appreciated that some embodiments described herein may include one or more generic or specialized processors (“one or more processors”) such as microprocessors; Central Processing Units (CPUs); Digital Signal Processors (DSPs): customized processors such as Network Processors (NPs) or Network Processing Units (NPUs), Graphics Processing Units (GPUs), or the like; Field Programmable Gate Arrays (FPGAs); and the like along with unique stored program instructions (including both software and firmware) for control thereof to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the methods and/or systems described herein. Alternatively, some or all functions may be implemented by a state machine that has no stored program instructions, or in one or more Application Specific Integrated Circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic or circuitry. Of course, a combination of the aforementioned approaches may be used. For some of the embodiments described herein, a corresponding device in hardware and optionally with software, firmware, and a combination thereof can be referred to as “circuitry configured or adapted to,” “logic configured or adapted to,” etc. perform a set of operations, steps, methods, processes, algorithms, functions, techniques, etc. on digital and/or analog signals as described herein for the various embodiments.
Moreover, some embodiments may include a non-transitory computer-readable storage medium having computer readable code stored thereon for programming a computer, server, appliance, device, processor, circuit, etc. each of which may include a processor to perform functions as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), Flash memory, and the like. When stored in the non-transitory computer-readable medium, software can include instructions executable by a processor or device (e.g., any type of programmable circuitry or logic) that, in response to such execution, cause a processor or the device to perform a set of operations, steps, methods, processes, algorithms, functions, techniques, etc. as described herein for the various embodiments.
Although the present disclosure has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present disclosure, are contemplated thereby, and are intended to be covered by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5285163 | Liotta | Feb 1994 | A |
5632655 | DeMarco, Jr. | May 1997 | A |
6116945 | Davis | Sep 2000 | A |
6227888 | Hahn | May 2001 | B1 |
8866485 | Lacey | Oct 2014 | B1 |
8888535 | Knight | Nov 2014 | B2 |
9166351 | Wang | Oct 2015 | B1 |
D790460 | Hibmacronan et al. | Jun 2017 | S |
D790461 | Hibmacronan et al. | Jun 2017 | S |
9985397 | Jiang | May 2018 | B2 |
10024902 | Cabot | Jul 2018 | B2 |
10256582 | Brandstatter | Apr 2019 | B1 |
10299405 | Chang | May 2019 | B2 |
10462929 | Su | Oct 2019 | B1 |
10490957 | Brandstatter | Nov 2019 | B1 |
10561135 | Sandford | Feb 2020 | B2 |
10568314 | Sandford | Feb 2020 | B2 |
10601194 | Chien | Mar 2020 | B1 |
20160274168 | Cabot | Sep 2016 | A1 |
20190190115 | Samardzija et al. | Jun 2019 | A1 |
20200063952 | Rego | Feb 2020 | A1 |