The present invention relates to an electrical plug connection for the electrical connection of at least two electrical leads, having the features of the preamble of claim 1.
Such a plug connector is known for example from DE 197 49 130 C1 and has two plug sections which contain mutually complementary electrical coupling sections. The first plug section comprises a receiving sleeve which encircles the first coupling section and which has on its inside a locking element in the form of a ring with internally projecting spring lugs. The locking element is displaceable between a locking position and an unlocking position and is pre-stressed in its locking position as a result of its spring elasticity. Held displaceably on a receiving sleeve is a sliding sleeve with which the locking element can be transferred to its unlocking position. The second plug section has a plug tube which surrounds the second coupling section. When the plug tube is inserted in the receiving sleeve, the locking element can rest in its locking position on the outside of the plug tube which appropriately has an annular groove at this point whereby the plug sections are secured on one another. This securing can be released by actuating the sliding sleeve to move the locking element into its unlocking position for which purpose an actuating section of the sliding sleeve interacts with the locking element.
In the known plug connection the sliding sleeve is held on the receiving sleeve by the fact that at an end distant from the locking element the sliding sleeve has an inwardly projecting collar which engages in, an external circumferential groove which is incorporated externally in the receiving sleeve or in the first plug section. This groove in this case forms two axial stops which limit the axial displaceability of the sliding sleeve. The dimensioning of the groove is selected such that the sliding sleeve is movable within its axial stops to such an extent that the actuating section of the sliding sleeve can come completely free from the locking element. Moreover, in the known plug connection the receiving sleeve is formed integrally on the first plug section, that is the first plug section and receiving sleeve are manufactured from one piece.
The generic plug connection thus operates according to the so-called push-pull principle and is configured as self-securing for the plugging process. Another plug connection of this type is known for example from DE 299 11 792 U1 which substantially differs from the plug connection described above in that the sliding sleeve is pre-stressed in its rest position.
This is achieved in the known plug connection with the aid of an additional compression spring which is inserted in an annular cavity between the actuating section and an externally located grip section of the sliding sleeve and is supported in the axial direction on the one hand on the sliding sleeve and on the other hand on an axial front face of the first plug section. By means of this measure the handling of the plug connection, especially the first plug section, can be considerably simplified. At the same time, independent relative movements of the sliding sleeve which could result in undesirable development of noise in an environment rich in vibrations and oscillations, are suppressed. However, the known plug connection is comparatively expensive to manufacture since an additional component, namely the additional compression springs, must be incorporated in an additional production step. However, since series-produced parts are involved here, a significant cost disadvantage is thereby obtained.
The present invention is concerned with the problem of providing an improved embodiment for a plug connection of the type specified initially which in particular makes it possible to achieve improved handling and can be manufactured cheaply.
This problem is solved according to the invention by the subject matter of the independent claims. Advantageous embodiments are the subject matter of the dependent claims.
The invention is based on the general idea of using the spring force present in any case on or in the locking element for pre-stressing the sliding sleeve in its rest position. This is achieved by suitable dimensioning which allows the locking element to drive the sliding sleeve into its rest position via the actuating section. By this measure the locking element obtains a double function so that an additional compression spring for pre-stressing the sliding sleeve can be eliminated. This is an enormous advantage especially with a series-produced part of this type since the production costs are not increased or only insignificantly increased compared with a conventional plug connection and at the same time, increased actuation comfort, simplified handling and reduced noise development during vibrations can be provided.
According to an especially advantageous embodiment, at least when the second plug section is at a distance from the first plug section, the locking element can press the sliding sleeve towards an axial stop defining the rest position of the sliding sleeve such that it abuts thereon. With this method of construction the sliding sleeve automatically occupies its rest position at least when the plug connection is released. An embodiment is preferred in which the two plug sections are matched to one another such that when the plug sections are inserted into one another in the securing state, that is especially in the locking position of the locking element, the locking element presses the sliding sleeve against the axial stop defining the rest position of the sliding sleeve so that it abuts thereon. In this way, even in the plugged-in state, defined relative positions between locking element and plug section are given which especially supports reduced development of noise during vibrations.
According to another particular embodiment, the sliding sleeve can be held on the receiving sleeve on the inside of the receiving sleeve. This method of construction thus dispenses with any holding of the sliding sleeve on the outside of the receiving sleeve, which is advantageous with regard to the functional safety of the sliding sleeve since the outside of the plug sections may become contaminated during operation of the plug connection depending on the area of usage. In cases where the sliding sleeve is held externally on the receiving sleeve, such contamination can result in the axial mobility of the sliding sleeve being impaired. However, in order that the sliding sleeve can fulfil its function, namely unlocking the locking element, its axial displaceability must not be impaired. An internally located support according to the proposed method of construction has only a reduced risk of contamination.
In an advantageous embodiment the locking element can be constructed as a spring ring which has a plurality of locking lugs distributed in the circumferential direction, which project inwards with a radial component and are displaceable in a spring-elastic fashion in the plug direction between the locking position and the unlocking position, wherein an inner cross-section of the spring ring in the locking position is smaller than that in the unlocking position. With this method of construction the locking element produces a spring force which pre-stresses the locking element in its locking position itself whereby an extremely simple structure is obtained for the plug connection.
Further important features and advantages of the invention are obtained from the dependent claims, from the drawings and from the relevant description of the figures with reference to the drawings.
It is to be understood that the aforesaid features and those to be explained subsequently can be used not only in the respectively given combination but also in other combinations or alone, without going beyond the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are explained in detail in the following description wherein the same reference numbers refer to the same or functionally the same or similar components.
In the figures, respectively schematically,
In accordance with
The first plug section 2 has a receiving sleeve 10 which is arranged coaxially to the first coupling section 4 with respect to the plug direction and which encircles the coupling section 4 in a ring shape. This receiving sleeve 10 holds a locking element 12 on an inner side 11 facing the first coupling section 4.
In a preferred embodiment the locking element 12 comprises a spring ring which has a plurality of locking lugs 13 distributed in the circumferential direction which project inwards from an outer circumference of the spring ring 12.
The locking element or spring ring 12 is displaceable between a locking position shown in
The locking lugs 13 are preferably already inclined with respect to the plug direction 8 in the locking position as in this case and specifically at an angle of inclination smaller than 90°. The inclination of the locking lugs 13 is selected so that the angle of inclination is additionally reduced when the locking lugs 13 are transferred to the unlocking position. As a result of this orientation of the locking lugs 13, the forces required to move the locking lugs 13 into their unlocking position are reduced.
The method of construction of the spring ring 12 is such that its locking lugs 13 are pre-stressed in the locking position. The movement of the individual locking lugs 13 into the unlocking position thus takes place against a restoring spring force of the spring ring 12.
The first plug section 2 is additionally equipped with a sliding sleeve 15 which is also arranged coaxially to the first coupling section 4 wherein the sliding sleeve 15 also encircles the first coupling section 4 in a ring shape. In the preferred embodiment shown here the sliding sleeve 15 has a substantially U-shaped profile with two U legs of different length. The radially inner U-leg forms an actuating section 16 of the sliding sleeve 15 whilst the radially outer U-leg forms a grip section 17 of the sliding sleeve 15. Grip section 17 and actuating section 16 are interconnected by a collar 18 which extends transverse to the plug direction 8, which forms the U-base in the U-profile and is arranged adjacent with respect to a front end 19 of the receiving sleeve 10.
The sliding sleeve 15 is displaceably mounted on the receiving sleeve 10 in the plug direction 8. In this case,
In accordance with
In another embodiment in which the plug tube 20 consists of plastic, such a locking step 21 or such an annular groove 23 can fundamentally be dispensed with.
A plugged connection state between the two plug sections 2, 3 is made as follows with the plug connection 1 according to the invention:
In an initial state as shown in
In the state as shown in
When the second plug section 3 is inserted more deeply into the first plug section 2, the locking lugs 13 are bent in the plug-in direction, that is towards the unlocking position. In the state as shown in
In the state as shown in
If the plug tube 20 consists of plastic and no locking step 21 is constructed thereon, the locking element 21 which suitably consists of metal, can be supported with its locking lugs 13 directly on the outside 22 of the plug tube 20. As a result of the combination of materials (relatively soft plastic of the plug tube 20 and relatively hard metal of the locking element 12), sufficient force locking is achieved between the plug sections 2, 3, especially in connection with relatively sharp-edged locking lugs 13.
At the same time the inclination towards the plug direction 8 provided for the locking position of the locking lugs 13 in this case brings about a type of wedging or self-inhibition which can only be overcome with extremely large forces whereby the securing between the plug sections 2, 3 is extremely effective. In the connection state between the plug sections 2, 3 achieved in
The pre-determined insertion depth between the plug sections 2, 3 is selected among other things so that in every case correct electrical contacting is ensured between the coupling elements 4, 5. In other words, the pins 9 penetrate sufficiently deeply into the relevant pin receivers.
Releasing the plug connection 1, that is retracting the second plug section 3 from the first plug section 1, can be achieved in accordance with
For an optimum mode of action of the actuating section 16 for unlocking the plug sections 2, 3, said actuating section interacts with the locking lugs 13 at its end facing the locking element 12. Furthermore, at this end the actuating section 16 can be bevelled at the same inclination as that exhibited by the locking lugs 13 in their unlocking position. The inner wall 11 of the receiving sleeve 10 is also bevelled in accordance with this inclination adjacent to the locking element 12.
The inner cross-section 27 and outer cross-section 28 form an axial guide between the plug tube 20 and receiving sleeve 10. This facilitates location of the connection state when inserting the plug sections 2, 3. This axial guide is achieved here by an inner cross-section 27 of the sliding sleeve 15 in the area of its actuating section 16 being selected as approximately the same size or slightly larger than an outer cross-section 28 of the plug tube 20.
According to a preferred variant, the plug tube 20, the receiving sleeve 10 and the locking element 12 are made of metal. In addition, the locking element 12 is connected to the outer sleeve 10 in a radially external electrically conducting fashion and is constructed so that in the inserted connection state it also makes electrical contact with the plug tube 20. In this case, contact with the plug tube 20 is made via a plurality of points distributed circumferentially so that quasi-annular contact between locking element 12 and plug tube 20 is formed. The contact between locking element 12 and receiving sleeve 10 is also constructed as closed ring-shaped since the locking element 12 is inserted in an annular recess 29 constructed on the inside 11 of the receiving sleeve 10. As a result of this method of construction, in the contact state there is an electrically conducting connection between plug tube 20 and receiving sleeve 10 which completely surrounds the electrical contact of the coupling sections 4, 5. Accordingly, the plug connection 1 according to the invention is EMC-compatible and makes it possible to screen electromagnetic impulses or interference which can be diverted from the plug connection 1 via the plug tube 20 or via the receiving sleeve 10.
Accordingly, in an advantageous embodiment the plug sections 2, 3 are constructed such that in the connection state they protect the electrical connection of the relevant electrical coupling sections 4, 5 from electromagnetic interactions with the environment of the plug sections 2, 3. In this way, the plug connection 1 is constructed as electromagnetically compatible so that it can be used in EMC-sensitive installation situations. EMC stands for Electro Magnetic Compatibility.
In the same way, it can be expedient to construct the plug sections 2, 3 such that in the connection state they screen the electrical connections of the coupling sections 4, 5 from electromagnetic interference and divert electromagnetic interference away from the electrical connection of the coupling sections 4, 5. The screening and diversion of the electromagnetic interference also improves the electromagnetic compatibility of the plug connection 1. Electromagnetic interference formed in the vicinity of the plug connection 1 cannot act on the electrical connection of the coupling sections 4, 5 and equally, electromagnetic interference propagating inside the leads which are interconnected by means of the plug connection 1 cannot enter into its vicinity. The diversion of the electromagnetic interference ensures that the interference cannot add up to impermissibly high values.
The EMC compatibility of the plug connection 1 or close screening of the plug connection combined with the immediate diversion of interference can be achieved in the plug connection 1 as shown for example by constructing the receiving sleeve 10, the plug tube 20 and the locking element 12 of metal, wherein the locking element 12 is electrically connected to the receiving sleeve 10 and in the connection state of the plug sleeve 20 is in electrical contact at a plurality of points distributed around the circumference. With this method of construction, the desired EMC compatibility or the desired screening and diversion can be achieved almost without additional expenditure since the electrically conducting locking element 12 makes it possible to achieve most effective circumferential contact between the plug sections 2, 3 in the connection state.
Since the sliding sleeve 15 need not be involved in the electrical contact between plug tube 20 and receiving sleeve 10, the sliding sleeve 15 can suitably be made of a plastic.
With the aid of the outer thread 30 the plug connection 1 according to the invention is backwards compatible with respect to the second plug section 3, that is the second plug section 3 of the plug connection 1 according to the invention can be used, as shown in
As an example,
Both the first plug section 2 and also the second plug section 3 can be manufactured such that after their manufacture their coupling sections 4, 5 are already fixedly connected to their respective leads. Alternatively, a self-assembly embodiment is also possible in which the plug sections 2, 3 are not yet connected to the leads so that the respective leads can be connected at the particular usage location.
Basically, both plug sections 2, 3 can each be attached to one end of a cable 35 (see
Further particular features of the present plug connection 1 are shown in
In the embodiments shown in
In the embodiments in
Each of said locating devices 37 comprises at least one locating edge which for clarity is merely designated as 38 in
The respective locating edge 38 can either be formed by a single locating edge 38 which encircles in a closed ring shape in the circumferential direction or by a plurality of locating edges 38 arranged distributed in the circumferential direction. The same also applies to the locating contour 39.
In the embodiments in
In the embodiment according to
In the embodiments in
The embodiments in
Preferred however is the embodiment shown here in which the first plug section 2 has an outer toothed structure 42 on an outer side facing the receiving sleeve 10. Complementary thereto the receiving sleeve 10 has a corresponding inner toothed structure 43 on its inner side facing the first plug section 2. The receiving sleeve 10 is arranged such that it can be placed axially onto the first plug section 2. In the inserted state shown the complementary toothed structures 42, 43 intermesh in a form-locking fashion and prevent or impede the receiving sleeve 10 from being removed from the first plug section 2.
The arrangement of the receiving sleeve as a separate component results in easier assembly. The receiving sleeve preferably consists of a plastic in this embodiment.
Number | Date | Country | Kind |
---|---|---|---|
103 24 794.7 | Mar 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2004/000793 | 4/14/2004 | WO | 00 | 4/10/2008 |