The present invention relates to an electrical plug-type (plug-in) connector part having a contact carrier, a protective housing, and a clamping bracket in which the contact carrier has receiving chambers for electrical plug-type contact elements connected to respective electrical connection lines, the protective housing at least partially covers the contact carrier and forms passage openings for the electrical connection lines, and the clamping bracket is attachable to the protective housing in a locking manner and fixes the electrical connection lines to the protective housing in a clamping manner after the attachment is made.
DE 10 2008 018 758 A1 describes a plug-in connector having a sealing unit with at least one receiving recess for accommodating a contact and/or a cable. The plug-in connector has a closing mechanism for reducing a cross-section of the receiving recess to the seal cross-section after the contact and/or the cable are/is introduced into the receiving recess.
One disadvantage of many plug-in connector parts is that the connections between plug-in contact elements and electrical connection lines are mechanically stressed by vibratory influences such as vibrations in a motor vehicle. Over time, the electrical connections between the connection lines and the plug-in contact elements may thus deteriorate or even fail completely.
The plug-in connector described in DE 10 2008 018 758 A1 allows fastening of connection lines in the receiving recesses by the closing mechanism. However, this assumes that the cross-sectional width of the connection lines is well-adapted to the width of the receiving recesses. Although the elastic properties of a sealing unit made of an elastomer allow a certain tolerance compensation with regard to the cable cross-section, this is however only to a relatively small extent.
If the cross-sectional width of a connection line is much smaller than the provided dimension, then the connection line is no longer tightly enclosed by the elastomeric material of the sealing unit and therefore is not securely fastened. On the other hand, if the cross-sectional width of a connection line is much larger than the provided dimension, then closing of the closing mechanism is made more difficult or impossible. The plug-in connector described in DE 10 2008 018 758 A1 therefore provides one cross-sectional width for the connection lines, and allows only relatively small deviations therefrom.
DE 10 2008 055 841 A1 describes a plug-in connector in which sections of electrical connection lines are enclosed between a housing body and an attachable housing part in a form-fit manner. The plug-in connector also requires connection lines having a precisely specified cross-section. If the connection lines are thinner than specified, then they are no longer enclosed in the form-fit manner and thus not protected against vibration between the housing body and the housing part. Connection lines having a larger cross-section than specified cannot be used because, due to the precise shape adaptation, the housing part can no longer be tightly connected to the housing body.
In many applications, control and power signals which correspond to current intensities of various orders of magnitude are led across the contacts of multi-pole plug-in connectors. Accordingly, electrical connection lines having greatly different line cross-sections are advantageous for conducting such different current intensities.
An object is an easily and cost-effectively manufactural electrical plug-type connector part that allows simple installation, and at the same time, vibration-resistant fastening of electrical connection lines having greatly different line cross-sections.
In carrying out at least one of the above and/or other objects, an electrical plug-type connector part is provided. The connector part includes a contact carrier, a protective housing, and a clamping bracket. The contact carrier has chambers for receiving contact elements connected to electrical connection lines. The protective housing is engaged over the contact carrier and having passage openings receiving the electrical connection lines. The clamping bracket is attachable to the protective housing and has integrally formed elastic spring arms corresponding to the passage openings in the protective housing. When the clamping bracket is attached to the protective housing the spring arms extend into the passage openings and resiliently press the electrical connection lines received in the passage openings against an inner wall of the protective housing for the clamping bracket to thereby fix the electrical connection lines to the protective housing in a clamping manner.
An embodiment provides an electrical plug-type connector part having a contact carrier, a protective housing, and a clamping bracket. The contact carrier has receptacle chambers for electrical plug-type contact elements. The plug-type contact elements are respectively connected to electrical connection lines. The protective housing engages over the contact carrier at least in sections. The protective housing forms passage openings for the electrical connection lines. The clamping bracket is joinable to the protective housing in a latching manner. The clamping bracket fixes the electrical connection lines to the protective housing in a clamping manner after the joining process. The clamping bracket has an integrally formed elastic spring arm for each passage opening in the protective housing. The spring arms, after being fitted to the protective housing, press respective electrical connection lines guided through the passage openings of the protective housing against an inner wall of the protective housing in a resilient manner.
In embodiments, the clamping bracket has an integrally formed elastic spring arm for each passage opening in the protective housing. Each spring arm, after assembly to the protective housing, resiliently presses an electrical connection line, which is guided through a passage opening of the protective housing, against an inner wall of the protective housing.
In an embodiment, to achieve simple installation of the clamping bracket on the protective housing and easy fixing of the connection lines, the clamping bracket is connectable to the protective housing in a latching manner.
In an embodiment, the clamping bracket may be positioned on the protective housing in two locking (or latching) positions. The clamping bracket may thus initially be pre-mounted on the protective housing in a pre-locking position in which the spring arms of the clamping bracket do not yet extend into the passage openings of the protective housing. The plug-type contact elements may thus be passed through the passage openings and inserted into the receiving chambers of the contact carrier. The insertion may take place either manually or in a completely automated manner. After the connection lines are aligned in the passage openings, pressure is exerted on the clamping bracket to move the clamping bracket from its pre-locking position into an end locking position. In the end locking position the spring arms engage against the connection lines and press the connection lines against inner walls of the protective housing. The connection lines are thus locked in the passage openings in the protective housing in a force-fit manner.
In an embodiment, the clamping bracket has an essentially straight bracket strip having a detent hook integrally formed on each of its end sections. Multiple spring arms are integrally formed on the bracket strip. Each spring arm forms a first section and a second section. The two sections extend approximately perpendicularly with respect to one another and merge into one another in a rounded manner. The two sections are both aligned essentially perpendicularly with respect to the longitudinal axis of the bracket strip.
In an embodiment, for stable fastening of the connection lines, the spring arms of the clamping bracket form an integrally formed hollow cavity (e.g., a shaped hollow flank) on their side facing the connection lines.
Use of the plug-type connector part in accordance with the embodiments is particularly advantageous in environments in which the connector part is exposed to stresses from vibrations such as, for example, in motor vehicles.
An exemplary embodiment of an electrical plug-type connector part in accordance with the present invention is illustrated in the drawings and explained in greater detail below. The drawings include the following:
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to
The connector part has a contact carrier 1 and a protective housing 4. An annular seal 16 is situated between contact carrier 1 and protective housing 4. Seal 16 rests on a circumferential shoulder 17 on contact carrier 1. Seal 16 encloses the periphery of contact carrier 1. Seal 16 seals the power-side portion of the connector part with respect to an attachable mating connector part (not shown) in a moisture-tight manner. The coupling of the mutually connectable connector parts is secured by a housing lock. The housing lock as part of the connector part includes a housing latch 15 integrally formed or fastened on protective housing 4.
Contact carrier 1 includes receiving chambers 2. Receiving chambers 2 are configured to respectively receive contact elements. The contact elements, which may be or art to be connected to respective electrical connection lines extending through passage openings 5 of protective housing 4, insert into respective ones of receiving chambers 2.
A secondary latch 19 is used for fastening contact elements received in receiving chambers 2. Secondary latch 19 is lockable to the outer wall of contact carrier 1. Secondary latch 19 includes locking pins 20 integrally formed thereon. While secondary latch 19 is attached to contact carrier 1, locking pins 20 respectively engage with openings 18 on the contact carrier and mechanically lock the contact elements resting in receiving chambers 2 of the contact carrier.
Contact carrier 1 forms multiple, e.g., four, receiving chambers 2 for multiple, e.g., four, contact elements. Connection lines 3 (shown
The connector part further includes a clamping bracket 6. Clamping bracket 6 latches or snaps onto protective housing 4. While clamping bracket 6 is attached onto protective housing 4, the clamping bracket secures connection lines 3 that are connected to the contact elements resting in receiving chambers 2 of contact carrier 1.
For securing connection lines 3, clamping bracket 6 has integrally formed spring arms 7. Spring arms 7 respectively correspond to passage openings 5 of protective housing 4. Spring arms 7 resiliently press connection lines 3 led through passage openings 5 against an inner wall 14 of protective housing 4.
As shown in
When all provided contact elements are inserted into receiving chambers 2 of contact carrier 1 they are thus fastened to the contact carrier in the receiving chambers due to the locking attachment of secondary latch 19 to the outer wall of the contact carrier. Connection lines 3 led out from passage openings 5 in protective housing 4 are subsequently fixed to the protective housing by applying pressure to the outer side of bracket strip 8 of clamping bracket 6. Consequently, clamping bracket 6 goes from its pre-locking position into its end locking position, in which the detent hooks 9 are engaged behind second detent projections (i.e., second latching projections) 11 on protective housing 4. For assisting with the locking to protective housing 4, an elastically attached detent cam 24 (shown in
The assembled state illustrated in
The sides of spring arms 7 of clamping bracket 6 facing connection lines 3 each form a hollow cavity 12. Connection lines 3 are thus enclosed in sections in an arch shape by the rounded inner walls 14 of protective housing 4 and spring arms 7 and are thus held with precise positioning in passage openings 5 of the protective housing.
1 contact carrier
2 receiving chamber(s) of the contact carrier
3 electrical connection line(s)
4 protective housing
5 passage opening(s) of the protective housing
6 clamping bracket
7 spring arm(s) of the clamping bracket
8 bracket strip of the clamping bracket
9 detent hooks of the bracket strip of the clamping bracket
10 first detent projections on the protective housing
11 second detent projections on the protective housing
12 hollow cavity of a spring arm
13 side edges of the spring arms
14 inner wall of the protective housing
15 housing latch
16 seal
17 shoulder on the contact carrier
18 openings of the contact carrier
19 secondary latch
20 locking pins
21 first section of the spring arm
22 second section of the spring arm
23 longitudinal axis of the bracket strip of the clamping bracket
24 detent cam
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 005 282 | Apr 2015 | DE | national |
This application is a continuation of International Application No. PCT/EP2016/058893, published in German, with an International filing date of Apr. 21, 2016, which claims priority to DE 10 2015 005 282.9, filed Apr. 24, 2015; the disclosures of which are hereby incorporated in their entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4998896 | Lundergan | Mar 1991 | A |
5618201 | Yagi | Apr 1997 | A |
5672073 | Matsumura | Sep 1997 | A |
6280262 | Tanaka | Aug 2001 | B1 |
6568948 | Matsuoka | May 2003 | B2 |
Number | Date | Country |
---|---|---|
2829639 | Nov 1979 | DE |
10209566 | Jan 2003 | DE |
102008018758 | Oct 2009 | DE |
102008055841 | May 2010 | DE |
2009146768 | Jul 2009 | JP |
Entry |
---|
European Patent Office, International Search Report for the corresponding International Application No. PCT/EP2016/058893, dated Jun. 27, 2016. |
German Patent Office, German Search Report for the corresponding German Patent Application No. 10 2015 005 282.9 dated Dec. 9, 2015. |
Number | Date | Country | |
---|---|---|---|
20170358888 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2016/058893 | Apr 2016 | US |
Child | 15687740 | US |