Electrical power connectors with cooling features

Information

  • Patent Grant
  • 7476108
  • Patent Number
    7,476,108
  • Date Filed
    Thursday, October 20, 2005
    18 years ago
  • Date Issued
    Tuesday, January 13, 2009
    15 years ago
Abstract
Electrical connectors can include thermally conductive material in regions proximate contacts residing therein to sink heat away from the contacts. The thermally-conductive materials can be provided in the housing structure of the connectors. The thermally-conductive material can also be provided as a thermally-conductive member distinct from the housing.
Description
FIELD OF THE INVENTION

The present invention relates to electrical connectors that include power contacts and thermally conductive structural elements in close proximity with the power contacts for sinking heat away from the contacts.


BACKGROUND OF THE INVENTION

Power connectors, by their functional nature, produce heat. Typical materials used in most existing connector housing designs are thermally insulative, and thus, hold in heat, allowing it to build up inside the connector. One approach for improving heat dissipation has been to core out the housing as much as possible to allow clearance around the contacts within the housing in hopes of improving convective heat transfer. However, stagnant air is a poor conductor of heat, and localized forced air is dependent on a customer's application.


SUMMARY OF ILLUSTRATIVE EMBODIMENTS

The invention includes both plug and receptacle power connectors. In some of the embodiments, the housing of at least one of the plug and receptacle connectors includes thermally conductive material in regions proximate contacts residing therein to sink heat away from the contacts. Both mating connectors can employ thermally conductive materials in their housing structure. The connector housing may also include materials other than the thermally conductive material. Furthermore, the thermally conductive material may reside generally throughout the housing structure. Alternatively, the thermally-conductive material may be selectively placed at locations such as locations proximate the heat generating contacts.


One manner of providing thermally conductive material proximate the power contacts is by forming the housing structure out of such material; for example, injection moldable thermoplastic materials including additives or fillers that render the cured polymer thermally conductive. Another manner includes employing a separately formed heat dissipation member that can be coupled to either the housing structure surrounding the power contacts or to the contacts themselves. For example, a clip, made out of thermally conductive material, can be added to a power contact, and the contact be inserted into the housing. At least a portion of the clip is preferably exposed to the exterior of the connector housing, so that heat conductively transferred from the contact can subsequently be transferred away from the entire connector via convection. The connector housing may be made from thermally insulative or conductive materials in embodiments where a separately formed heat dissipation member is coupled to housing structure or the power contact.


In preferred embodiments of the present invention, power contacts including plate-like body members are employed. The relatively large surface area of these contacts help facilitate heat transfer to the surrounding thermally conductive housing material. Other power contact designs can equally be employed without limitation. Moreover, the principles of the present invention can be applied to both single and multiple-contact connectors.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a front perspective view of an exemplary plug connector in accordance with the present invention.



FIG. 2 is a rear perspective view of the plug connector shown in FIG. 1.



FIG. 3 is a perspective view of an exemplary receptacle connector provided by the present invention.



FIG. 4 is a partial perspective view of one preferred plug connector being mated with one preferred receptacle connector.



FIG. 5 is a front perspective view of another exemplary electrical connector provided by the present invention.



FIG. 6 is a rear perspective view of a preferred power contact and heat dissipation member subassembly.



FIG. 7 is a front perspective view of another preferred power contact and heat dissipation member subassembly.



FIG. 8 is rear view of an exemplary electrical connector including a heat dissipation member and multiple heat transfer pathways.



FIG. 9 is a rear perspective view of an electrical connector provided by the present invention.



FIG. 10 is a front perspective view of a third preferred power contact and heat dissipation member subassembly.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Reference is made to FIGS. 1-3 wherein like features are labeled with like reference characters. An exemplary power plug connector 10 is shown in FIGS. 1 and 2, including a housing 20, a contact pocket 21, and a plug contact 30 disposed substantially in pocket 21. Plug contact 30 is defined by a pair of plate-like body members 32 and 34. As shown, plate-like body members 32 and 34 are not connected to each other; however, alternative embodiments may include a connecting member. A plurality of beams 40 extend from a front edge of each of body members 32 and 34 for engaging a receptacle contact. Beams 40 have a bulb-shaped distal end 42 that define the primary engagement area of the plug contact with a corresponding receptacle contact. Extending from a bottom edge of each of plate-like body members 32 and 34 is a plurality of terminals 44 for engaging a printed circuit board. Contacts having configurations different than that shown can also be used in accordance with the present invention.


Respective inner surfaces of plate-like body members 32 and 34 are positioned flush against a wall 22 of pocket 21 that preferably includes thermally conductive material, so that heat can be transferred away from the contact itself. In preferred embodiments, the thermally conductive material includes a thermally conductive thermoplastic. Such thermoplastics are currently available from PolyOne Corp., Cool Polymers, LNP Engineering Plastics, TRP Co., and Ticona Corp. Although most thermoplastics, particularly those traditionally used in the electronics industry, are good insulators, fillers or additives can be compounded with existing base polymers (e.g., nylons, liquid crystal polymers, and polyesters) to impart thermal conductivity. Among the most commonly used heat-conductive additives are graphite carbon fibers; carbon powder; metallic fillers such as copper powder, steel, aluminum power, and aluminum flake; and ceramic fillers such as aluminum nitride and boron nitride. Thermally conductive polymers can be produced in either electrically or non-electrically conductive grades, either of which may be used in a connector application of the present invention.


The thermally conductive material can have a thermal conductivity of approximately 1.2 W/m K to approximately 2.4 W/m K, and a heat capacity of approximately 1.1 J/g K to approximately 1.3 J/g K. These particular ranges of thermal conductivity and heat capacity are disclosed for exemplary purposes only. Thermally conductive materials having thermal conductivities or heat capacities outside of these ranges can be used in the alternative.


Respective outer surfaces of plate-like body members 32 and 34 are exposed to housing channels 24 and 26. These channels can improve heat dissipation from plug contact 30 via convection. Thus, heat generated by contact 30 can be transferred away from the contact both conductively via thermally conductive wall 22 and convectively via air flow through channels 24 and 26. Besides wall 22, other portions of plug connector housing 20 can employ thermally conductive material. For example, plug connector housing 20 can be injection molded from thermally conductive polymers so that the entire structure is available as a heat sink. In this scenario, radiative heat transfer can also occur from the outer surfaces of plate-like body members 32 and 34 to opposing pocket walls 28 (not visible) and 29.


Referring now to FIG. 3, an exemplary receptacle connector 50 is shown, including a housing 60, a contact pocket 61, and a receptacle contact 70 disposed in pocket 61. Receptacle contact 70 has a pair of spaced apart plate-like body members 80 and 82 (not visible). As shown, plate-like body members 80 and 82 are not connected to each other; however, alternative embodiments may include a connecting member. A plug contact receiving space 72 is interposed between body members 80 and 82, and a plurality of terminals 84 extends from each of the body members 80 and 82. Connector housing 60 is preferably made from thermally conductive polymers to facilitate heat transfer from contact 70 to surrounding housing structure; e.g., contact pocket walls 62 and 64. Plug contact receiving space 72 may also facilitate heat transfer through convective air flow though housing 60.


Referring now to FIG. 4, an exemplary plug connector 110 is shown being mated with an exemplary receptacle connector 150. Features of connectors 110 and 150 are labeled with reference numbers corresponding to those directed to similar features in connectors 10 and 50, but in the hundred series. When connectors 110 and 150 are mated, the bulb-shaped distal end 142 of beams 140 resiliently deflect inwardly, creating normal forces. These normal forces help to ensure intimate contact between the contact plate-like body members and adjacent housing material that preferably includes thermally conductive material. This intimate contact enhances heat transfer from the contacts. The normal forces urge inner surfaces of body members 132 and 134 against wall 122, and outer surfaces of body members 180 and 182 against walls 162 and 164. Much of the heat is locally generated at the mating interface between the beams' distal ends 142 and inner surface regions of plate-like body members 180 and 182. Heat dissipation is improved by employing thermally conductive material directly behind the interface.


In alternative connector embodiments of the present invention, additional thermally conductive material can be disposed between contact features and connector housing features, which also comprise thermally conductive material. For example, a conductive pad or compound can be disposed in gaps between contact body members and surrounding housing structure. In some instances, such additional thermally conductive material is included to fill any small air gaps (which would be insulative) arising from high points on the adjacent contact and/or housing structures. Here, there would be some portions of the contact body member that are in intimate contact surrounding housing structure and some portions that are coupled (conductively) via the additional conductive material. In other instances, no portions of the contact will be in direct contact with surrounding housing structure, and the gap would be at least partially filled with an added conductive pad or compound for example.


Referring now to FIG. 5, another exemplary connector 200 is shown, including a housing 202, a plurality of power contacts 204, and a heat dissipation member 206. Housing 202 may be made from thermally insulative or thermally conductive materials. A subassembly 210 of power contact 204 and heat dissipation member 206 is illustrated in FIG. 6. Power contact 204 includes first and second plate-like body members 207 and 208 that are shown being stacked against each other whereby at least a portion of their inner surfaces are preferably touching (note that some portions of the opposing inner surfaces may be spaced apart due to purposeful design consideration and/or manufacturability). Each of body members 207 and 208 comprises a series of angled cantilevered beams 220 and a series of straight cantilevered beams 222 arranged in an alternating manner. Opposing angled beams 220 define “pinching” or “receptacle” beams that are capable of engaging one or more straight beams of a contact associated with a mating electrical connector. Contacts having a different number of beams, and/or different beam geometries, are equally contemplated by the present invention. Each of body members 207 and 208 further comprises a plurality of terminals 225 for engaging a printed circuit structure. Terminals 225 can be configured for either a press-fit or soldered engagement, or any other engagement readily known to the skilled artisan.


Heat dissipation member 206 can have many different forms, including a clip 230, as is shown in FIGS. 6 and 7. Clip 230 is constructed out of thermally conductive material, such as, for example, metal or the modified thermoplastics described above, to sink heat away from power contact 204 through conduction. Clip 230 includes a top portion 232 and a pair of panels 234 and 236 that extend downwardly from top portion 232. As shown, contact body members 207 and 208 are stacked against each other, so that panel 234 engages an outer portion of body member 207 while panel 236 engages an outer portion of body member 208. A thermally conductive gasket or compound 235 may optionally be employed in between the panels and contact body members to ensure good conductivity. Top portion 232 can optionally employ heat transfer enhancing features, such as, for example, a plurality of studs 240 or fins 250 (shown in FIG. 7). Although not shown, contact body members 207 and 208 may be spaced apart, wherein one or more clip panels are placed in a medial space defined between the body members to engage respective inner portions of the body members. Additional clip panels may further engage respective outer portions of the spaced apart body members.


The use of the term “clip” is in no way intended to limit the design of the heat dissipation member 206. Rather, the important aspects of the heat dissipation member is that it be designed and positioned in such a way to sink heat away from the power contact. In preferred embodiments, at least a portion of the heat dissipation member is exposed to the outside environment so as to create a heat transfer pathway from a connector interior to the connector exterior. As can be seen in FIG. 5, which represents only one preferred configuration, the area of the heat dissipation member 206 that is open exposed to the outside environment is perpendicular to the portion (downwardly extending panels) that is inserted into the connector, thereby increasing the surface area exposed to the outside environment, and thus, the amount of thermal convection to the cooler outside environment. The portion of the heat dissipation member within the connector housing (panels 234, 236) is oriented parallel, and in intimate contact with the body members of the power contact. The panels transfer heat to the perpendicular portion exposed to the outside environment by means of conduction, while the perpendicular portion then transfers that heat to the environment by means of convection. Note that although it is preferred for at least a portion of the thermally conductive heat dissipation member be exposed to the outside environment, the heat dissipation member may be completely contained within a connector housing in alternate embodiments.


A rear portion of an electrical connector 260, similar to connector 200, is shown in FIG. 8. Connector 260 includes a housing 268, a power contact 270, and a heat dissipation member 280. The features of power contact 270 and heat dissipation member 280 are similar to those shown in FIGS. 6 and 7. Housing 268 has four channels 282, 283, 284 and 285 that may facilitate heat transfer away from power contact 270 via convection. Heat can be transferred directly away from power contact 270 by convective means with air flow through channels 284 and 285. Heat can also be transferred indirectly away from power contact 270 by convective means with heat first being transferred from power contact 270 to heat dissipation member 280 through conductive means. Housing 268 may be made out of either thermally insulative or thermally conductive materials. Where thermally conductive materials are employed, a portion of the heat dissipation member 280 may be in intimate contact with surrounding housing structure.


Depending on the application, more or less heat can be generated from transmission of power through the electrical connectors of the present invention. In a high heat situation, the thermally conductive heat dissipation member can include a considerable amount of surface area, both in contact with the power contact and exposed to an exterior of the connector (i.e., the outside environment). By way of example, and as shown in FIG. 9, a connector 300 is shown including a housing 310, a plurality of power contacts 320 and an equal number of heat dissipation members 330.


A subassembly 350 of a power contact 320 and heat dissipation member 330 is shown in FIG. 10. Power contact 320 includes first and second plate-like body members 323, 324, with each having alternating angled 325 and straight 326 cantilevered beams extending from a body member front edge, and a plurality of terminals 327 extending from a body member bottom edge. Heat dissipation member 330 comprises a pair of panels 332 and 334 that are in contact with respective outer portions of body members 323, 324, and multiple fins 340 extending along top and rear portions of the panels. As can be seen in FIG. 9, the connector housing 310 is configured to permit substantial exposure of the fins 340 for efficient convective heat transfer.


In FIGS. 5-10, an individual heat dissipation member engages each power contact. However, a fewer number of heat dissipation members may be employed, so that not every power contact is in engagement with a heat dissipation member. Moreover, a heat dissipation member may be designed to engage more than a single power contact to make manufacturing and assembly more efficient.


Power contacts of the present invention are made from suitable materials, such as, for example, copper alloys. The contacts may be plated with materials such as gold, a combination of gold and nickel, or a range of other materials commonly known within the industry. The number of contacts and their arrangement in connector housings is not limited to that shown in the figures. Preferred power contacts of the present invention comprise plate-like body members. One of ordinary skill in the art would readily appreciate that the plate-like body members may be planar or non-planar in form. The power contacts may contain apertures or other heat transfer features. Similarly, the connector housings may contain heat transfer features not shown in the included figures, such as, for example, heat channels extending from the exterior of the connector to an interior of the housing, voids, or gaps adjacent some portions of the retained power contacts to combine conductive and convective heat transfer. Note that while both the plug and receptacle connectors described above employ thermally conductive materials, alternative embodiments include mating connectors where only one of the plug connector and the receptacle connector employs thermally insulative material.


The description has focused on exemplary power contact and connector embodiments shown in the figures. Variations of such embodiments are included within the spirit of the present invention, the manifestations of some of which is included through the various claims appended hereto.

Claims
  • 1. An electrical connector, comprising: a housing comprising a thermally-insulative material;a power contact positioned in the housing; anda thermally-conductive clip formed from a thermally-conductive thermoplastic and engaging the power contact so that the thermally-conductive clip transfers heat from the power contact.
  • 2. The electrical connector of claim 1, wherein the thermally-conductive clip comprises a first portion exposed to the environment around the electrical connector, and a first panel adjoining the first portion and positioned adjacent a first major surface of the power contact.
  • 3. The electrical connector of claim 2, wherein the thermally-conductive clip further comprises a second panel adjoining the first portion, the second panel being positioned adjacent a second major surface of the power contact.
  • 4. The electrical connector of claim 2, wherein the electrical connector comprises two power contacts and the first panel is positioned between the power contacts.
  • 5. The electrical connector of claim 2, wherein the first panel and the housing define a channel in fluid communication with the environment around the electrical connector whereby heat can be transferred from the power contact to the environment around the electrical connector by conduction and convection.
  • 6. The electrical connector of claim 2, wherein the first portion comprises a plurality of fins.
  • 7. The electrical connector of claim 2, wherein the first portion comprises a plurality of studs.
  • 8. The electrical connector of claim 1, wherein the power contact comprises two plates that define, in combination, both a female mating contact and a male mating contact.
  • 9. The electrical connector of claim 1, wherein the thermally-conductive thermoplastic comprises a polymeric material selected from the group consisting of: nylons; liquid crystal polymers; and polyesters; and a material selected from the group consisting of: graphite carbon fibers; carbon powder; metallic fillers; and ceramic fillers.
  • 10. The electrical connector of claim 2, wherein the electrical connector comprises two power contacts; the thermally-conductive clip further comprises a second panel adjoining the first portion; the first panel contacts a first of the power contacts; and the second panel contacts a second of the power contacts.
  • 11. The electrical connector of claim 2, wherein the first panel transfers heat from the power contact to the first portion by conductive heat transfer, and the first portion transfers heat to the environment around the electrical connector by convective heat transfer.
  • 12. An electrical connector, comprising: a housing comprising a thermally-insulative material;a power contact positioned in the housing;a thermally-conductive member formed from a thermally-conductive thermoplastic and disposed proximal to the power contact so that the thermally-conductive member transfers heat from the power contact; andat least one of a thermally-conductive gasket and a thermally-conductive compound disposed between the power contact and the thermally-conductive member.
  • 13. The electrical connector of claim 12, wherein the thermally-conductive member comprises a first portion exposed to the environment around the electrical connector, and a first panel adjoining the first portion and positioned adjacent a first surface of the power contact.
  • 14. The electrical connector of claim 13, wherein the electrical connector comprises two power contacts and the first panel is positioned between the power contacts.
  • 15. The electrical connector of claim 13, wherein the electrical connector comprises two power contacts and the first panel is positioned between the power contacts.
  • 16. The electrical connector of claim 13, wherein the first panel and the housing define a channel in fluid communication with the environment around the electrical connector whereby heat can be transferred from the power contact to the environment around the electrical connector by conduction and convection.
  • 17. The electrical connector of claim 13, wherein the first portion comprises a plurality of fins.
  • 18. The electrical connector of claim 13, wherein the first portion comprises a plurality of studs.
  • 19. The electrical connector of claim 13, wherein the power contact comprises two plates that define, in combination, both a female mating contact and a male mating contact.
  • 20. The electrical connector of claim 12, wherein the thermally-conductive thermoplastic comprises a polymeric material selected from the group consisting of: nylons; liquid crystal polymers; and polyesters; and a material selected from the group consisting of: graphite carbon fibers; carbon powder; metallic fillers; and ceramic fillers.
  • 21. The electrical connector of claim 13, wherein the electrical connector comprises two power contacts; the thermally-conductive member further comprises a second panel adjoining the first portion; the first panel contacts a first of the power contacts; and the second panel contacts a second of the power contacts.
  • 22. The electrical connector of claim 13, wherein the first panel transfers heat from the power contact to the first portion by conductive heat transfer, and the first portion transfers heat to the environment around the electrical connector by convective heat transfer.
  • 23. An electrical connector, comprising: a housing comprising a thermally-insulative material;a power contact positioned in the housing; anda thermally-conductive member formed from a thermally-conductive thermoplastic and touching the power contact so that the thermally-conductive member transfers heat from the power contact , wherein the thermally-conductive member includes a first portion exposed to the environment around the electrical connector, and a first panel adjoining the first portion and positioned adjacent a first major surface of the power contact, wherein the first panel and the housing define a channel in fluid communication with the environment around the electrical connector whereby heat can be transferred from the power contact to the environment around the electrical connector by conduction and convection.
  • 24. An electrical connector, comprising: a housing comprising a thermally-insulative material;a power contact positioned in the housing; anda thermally-conductive member formed from a thermally-conductive thermoplastic and comprising a first portion exposed to the environment around the electrical connector, and a first panel adjoining the first portion and positioned adjacent a first major surface of the power contact, wherein the first portion comprises at least one of a fin or a stud.
  • 25. An electrical connector, comprising: a housing comprising a thermally-insulative material;a power contact positioned in the housing, the power contact comprising a first body portion and a second body portion, the first body portion having a first internal surface and a first external surface, and the second body portion having a second internal surface facing the first internal surface and a second external surface; anda thermally-conductive member formed from a thermally-conductive thermoplastic, the thermally-conductive member touching at least one of the first and second external surfaces of the power contact so that the thermally-conductive member transfers heat away from the power contact.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional application No. 60/638,470, filed Dec. 22, 2004, the contents of which is incorporated by reference herein in its entirety. This application is related to U.S. provisional application No. 60/648,561, filed Jan. 31, 2005, and U.S. provisional application No. 60/668,350, filed Apr. 5, 2005. The contents of each of these applications is incorporated by reference herein in its entirety.

US Referenced Citations (257)
Number Name Date Kind
318186 Hertzog May 1885 A
741052 Mahon Oct 1903 A
1477527 Raettig Apr 1923 A
2248675 Huppert Jul 1941 A
2430011 Gillentine Nov 1947 A
2759163 Ustin et al. Aug 1956 A
2762022 Benander et al. Sep 1956 A
2844644 Soule, Jr. Jul 1958 A
3011443 Nielsen Dec 1961 A
3178669 Roberts Apr 1965 A
3208030 Evans et al. Sep 1965 A
3286220 Marley et al. Nov 1966 A
3411127 Adams Nov 1968 A
3420087 Hatfield Jan 1969 A
3514740 Filson May 1970 A
3538486 Shlesinger, Jr. Nov 1970 A
3634811 Teagno Jan 1972 A
3669054 Desso et al. Jun 1972 A
3692994 Hirschman et al. Sep 1972 A
3748633 Lundergan Jul 1973 A
3845451 Neidecker Oct 1974 A
3871015 Lin et al. Mar 1975 A
3942856 Mindheim, deceased et al. Mar 1976 A
3972580 Pemberton et al. Aug 1976 A
4070088 Vaden Jan 1978 A
4076362 Ichimura Feb 1978 A
4082407 Smorzaniuk et al. Apr 1978 A
4136919 Howard et al. Jan 1979 A
4159861 Anhalt Jul 1979 A
4217024 Aldridge et al. Aug 1980 A
4260212 Ritchie et al. Apr 1981 A
4288139 Cobaugh et al. Sep 1981 A
4371912 Guzik Feb 1983 A
4383724 Verhoevan May 1983 A
4402563 Sinclair Sep 1983 A
4403821 Zimmerman, Jr. et al. Sep 1983 A
4473113 Whitfield et al. Sep 1984 A
4505529 Barkus Mar 1985 A
4536955 Gudgeon Aug 1985 A
4545610 Lakritz et al. Oct 1985 A
4552425 Billman Nov 1985 A
4560222 Dambach Dec 1985 A
4564259 Vandame Jan 1986 A
4596433 Oesterheld et al. Jun 1986 A
4685886 Denlinger et al. Aug 1987 A
4717360 Czaja Jan 1988 A
4767344 Noschese Aug 1988 A
4776803 Pretchel et al. Oct 1988 A
4782893 Thomas Nov 1988 A
4815987 Kawano et al. Mar 1989 A
4820182 Harwath et al. Apr 1989 A
4867713 Ozu et al. Sep 1989 A
4878611 LoVasco et al. Nov 1989 A
4881905 Demler, Jr. et al. Nov 1989 A
4900271 Colleran et al. Feb 1990 A
4907990 Bertho et al. Mar 1990 A
4963102 Gettig et al. Oct 1990 A
4965699 Jorden et al. Oct 1990 A
4973257 Lhotak Nov 1990 A
4973271 Ishizuka et al. Nov 1990 A
4974119 Martin Nov 1990 A
4979074 Morley et al. Dec 1990 A
5024610 French et al. Jun 1991 A
5035639 Kilpatrick et al. Jul 1991 A
5052953 Weber Oct 1991 A
5066236 Broeksteeg Nov 1991 A
5077893 Mosquera et al. Jan 1992 A
5082459 Billman et al. Jan 1992 A
5094634 Dixon et al. Mar 1992 A
5104332 McCoy Apr 1992 A
5137959 Block et al. Aug 1992 A
5174770 Sasaki et al. Dec 1992 A
5194480 Block et al. Mar 1993 A
5213868 Liberty et al. May 1993 A
5214308 Nishiguchi May 1993 A
5238414 Yaegashi et al. Aug 1993 A
5254012 Wang Oct 1993 A
5274918 Reed Jan 1994 A
5276964 Anderson, Jr. et al. Jan 1994 A
5298791 Liberty et al. Mar 1994 A
5302135 Lee Apr 1994 A
5321582 Casperson Jun 1994 A
5381314 Rudy et al. Jan 1995 A
5400949 Hirvonen et al. Mar 1995 A
5427543 Dynia Jun 1995 A
5431578 Wayne Jul 1995 A
5457342 Herbst, II Oct 1995 A
5475922 Tamura et al. Dec 1995 A
5490040 Gavdenzi et al. Feb 1996 A
5533915 Deans Jul 1996 A
5558542 O'Sullivan et al. Sep 1996 A
5558859 Cretois Sep 1996 A
5577928 Duclos Nov 1996 A
5582519 Buchter Dec 1996 A
5590463 Feldman et al. Jan 1997 A
5609502 Thumma Mar 1997 A
5618187 Goto Apr 1997 A
5637008 Kozel Jun 1997 A
5643009 Dinkel et al. Jul 1997 A
5664973 Emmert et al. Sep 1997 A
5691041 Frankeny et al. Nov 1997 A
5702255 Murphy et al. Dec 1997 A
5730609 Harwath Mar 1998 A
5741144 Elco et al. Apr 1998 A
5741161 Cahaly et al. Apr 1998 A
5742484 Gillette et al. Apr 1998 A
5743009 Matsui et al. Apr 1998 A
5745349 Lemke Apr 1998 A
5746608 Taylor May 1998 A
5755595 Davis et al. May 1998 A
5772451 Dozier et al. Jun 1998 A
5787971 Dodson Aug 1998 A
5795191 Preputnick et al. Aug 1998 A
5810607 Shih et al. Sep 1998 A
5817973 Elco et al. Oct 1998 A
5857857 Fukuda Jan 1999 A
5874776 Kresge et al. Feb 1999 A
5876219 Taylor et al. Mar 1999 A
5876248 Brunker et al. Mar 1999 A
5883782 Thurston et al. Mar 1999 A
5888884 Wojnarowski Mar 1999 A
5908333 Perino et al. Jun 1999 A
5919050 Kehley et al. Jul 1999 A
5930114 Kuzmin et al. Jul 1999 A
5955888 Frederickson et al. Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971817 Longueville Oct 1999 A
5975921 Shuey Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5980321 Cohen et al. Nov 1999 A
5984726 Wu Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
6012948 Wu Jan 2000 A
6050862 Ishii Apr 2000 A
6059170 Jimarez et al. May 2000 A
6068520 Winings et al. May 2000 A
6071152 Achammer et al. Jun 2000 A
6077130 Hughes et al. Jun 2000 A
6089878 Meng Jul 2000 A
6095827 Dutkowsky et al. Aug 2000 A
6123554 Ortega et al. Sep 2000 A
6125535 Chiou et al. Oct 2000 A
6139336 Olson Oct 2000 A
6146157 Lenoir et al. Nov 2000 A
6146202 Ramey et al. Nov 2000 A
6146203 Elco et al. Nov 2000 A
6152756 Huang et al. Nov 2000 A
6174198 Wu et al. Jan 2001 B1
6180891 Murdeshwar Jan 2001 B1
6183287 Po Feb 2001 B1
6183301 Paagman Feb 2001 B1
6190213 Reichart et al. Feb 2001 B1
6193537 Harper, Jr. et al. Feb 2001 B1
6196871 Szu Mar 2001 B1
6202916 Updike et al. Mar 2001 B1
6210197 Yu Apr 2001 B1
6210240 Comerci et al. Apr 2001 B1
6212755 Shimada et al. Apr 2001 B1
6215180 Chen et al. Apr 2001 B1
6219913 Uchiyama Apr 2001 B1
6220884 Lin Apr 2001 B1
6220895 Lin Apr 2001 B1
6220896 Bertoncini et al. Apr 2001 B1
6234851 Phillips May 2001 B1
6257478 Straub Jul 2001 B1
6259039 Chroneos, Jr. et al. Jul 2001 B1
6269539 Takahashi et al. Aug 2001 B1
6272474 Garcia Aug 2001 B1
6293827 Stokoe et al. Sep 2001 B1
6299492 Pierini et al. Oct 2001 B1
6309245 Sweeney Oct 2001 B1
6319075 Clark et al. Nov 2001 B1
6328602 Yamasaki et al. Dec 2001 B1
6347952 Hasegawa et al. Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6359783 Noble Mar 2002 B1
6360940 Bolde et al. Mar 2002 B1
6362961 Chiou Mar 2002 B1
6363607 Chen et al. Apr 2002 B1
6371773 Crofoot et al. Apr 2002 B1
6379188 Cohen et al. Apr 2002 B1
6386924 Long May 2002 B2
6409543 Astbury et al. Jun 2002 B1
6428328 Haba et al. Aug 2002 B2
6431914 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6461202 Kline Oct 2002 B2
6471523 Shuey Oct 2002 B1
6471548 Bertoncini et al. Oct 2002 B2
6506081 Blanchfield et al. Jan 2003 B2
6514103 Pape et al. Feb 2003 B2
6537111 Brammer et al. Mar 2003 B2
6544046 Hahn et al. Apr 2003 B1
6551112 Li et al. Apr 2003 B1
6554046 Bryan et al. Apr 2003 B1
6554647 Cohen et al. Apr 2003 B1
6572410 Volstorf et al. Jun 2003 B1
6592381 Cohen et al. Jul 2003 B2
6652318 Winings et al. Nov 2003 B1
6663426 Fedder et al. Dec 2003 B2
6665189 Lebo Dec 2003 B1
6669514 Wiebking et al. Dec 2003 B2
6672907 Azuma Jan 2004 B2
6692272 Lemke et al. Feb 2004 B2
6702594 Lee et al. Mar 2004 B2
6705902 Yi et al. Mar 2004 B1
6712621 Li et al. Mar 2004 B2
6716068 Wu Apr 2004 B2
6740820 Cheng May 2004 B2
6743037 Kassa et al. Jun 2004 B2
6746278 Nelson et al. Jun 2004 B2
6769883 Brid et al. Aug 2004 B2
6769935 Stokoe et al. Aug 2004 B2
6776635 Blanchfield et al. Aug 2004 B2
6776649 Pape et al. Aug 2004 B2
6790088 Ono et al. Sep 2004 B2
6796831 Yasufuku et al. Sep 2004 B1
6811440 Rothermel et al. Nov 2004 B1
6829143 Russell et al. Dec 2004 B2
6835103 Middlehurst et al. Dec 2004 B2
6843687 McGowan et al. Jan 2005 B2
6848886 Schmaling et al. Feb 2005 B2
6848950 Allison et al. Feb 2005 B2
6848953 Schell et al. Feb 2005 B2
6869294 Clark et al. Mar 2005 B2
6884117 Korsunsky et al. Apr 2005 B2
6890221 Wagner May 2005 B2
6905367 Crane, Jr. et al. Jun 2005 B2
6929504 Ling et al. Aug 2005 B2
6947012 Aisenbrey Sep 2005 B2
6975511 Lebo et al. Dec 2005 B1
6994569 Minich et al. Feb 2006 B2
7001189 McGowan et al. Feb 2006 B1
7070464 Clark et al. Jul 2006 B2
7074096 Copper et al. Jul 2006 B2
7101228 Hamner et al. Sep 2006 B2
7104812 Bogiel et al. Sep 2006 B1
7114963 Shuey et al. Oct 2006 B2
7168963 Minich et al. Jan 2007 B2
7182642 Ngo et al. Feb 2007 B2
D542736 Riku May 2007 S
7273382 Igarashi et al. Sep 2007 B2
7335043 Ngo et al. Feb 2008 B2
20010003685 Aritani Jun 2001 A1
20020106930 Pape et al. Aug 2002 A1
20020142676 Hosaka et al. Oct 2002 A1
20020159235 Miller et al. Oct 2002 A1
20020193019 Blanchfield et al. Dec 2002 A1
20030013330 Takeuchi Jan 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030219999 Minich et al. Nov 2003 A1
20030220021 Whiteman, Jr. et al. Nov 2003 A1
20030236035 Kuroda et al. Dec 2003 A1
20040183094 Caletka et al. Sep 2004 A1
20050112952 Wang et al. May 2005 A1
20060003620 Daily et al. Jan 2006 A1
20060281354 Ngo et al. Dec 2006 A1
Foreign Referenced Citations (23)
Number Date Country
1 665 181 Apr 1974 DE
102 26 279 Nov 2003 DE
0 273 683 Jul 1988 EP
0 321 257 Apr 1993 EP
0 623 248 Nov 1995 EP
0 789 422 Aug 1997 EP
1 091 449 Sep 2004 EP
1 162 705 Aug 1969 GB
06-236788 Aug 1994 JP
07-114958 May 1995 JP
0 812 5379 May 1996 JP
2000-003743 Jan 2000 JP
2000-003744 Jan 2000 JP
2000-003745 Jan 2000 JP
2000-003746 Jan 2000 JP
2003-217785 Jul 2003 JP
546 872 Aug 2003 TW
576 555 Feb 2004 TW
WO 9743885 Nov 1997 WO
WO 9744859 Nov 1997 WO
WO 9815989 Apr 1998 WO
WO 0129931 Apr 2001 WO
WO 0139332 May 2001 WO
Related Publications (1)
Number Date Country
20060228948 A1 Oct 2006 US
Provisional Applications (1)
Number Date Country
60638470 Dec 2004 US