This invention relates generally to electrical power delivery systems, and relates more particularly to surge protectors, power strips, and the like having electrical power outlets therein.
Electric devices require electric power in order to function, and electrical power delivery systems of many descriptions have been developed for the purpose of delivering such power. Electrical power delivery systems include wall outlets, wall adapters, power strips, and surge protectors that deliver electric power in the form of alternating current (AC). Wall outlets are perhaps the oldest of the mentioned systems, but wall outlets typically provided no more than two electrical power outlets. At least part of the motivation for the development of wall adapters, power strips, and/or surge protectors was the provision of multiple electrical power outlets in the same space or area where there originally were only one or two. It is now quite common for a wall outlet, perhaps a wall outlet near a computer desk, for example, to have plugged into it a power strip or the like, whereby a single electrical power outlet supplies power to as many as twelve or more electrical power outlets in the surge protector.
Existing surge protectors, power strips, wall adapters, and the like work well as far as the provision of multiple electrical power outlets is concerned, but in other ways they are less than ideal, including their use of space and their cord management abilities. Accordingly, there exists a need for an electrical power delivery system that is neat and compact, easy to use, and allows cables and cords to be managed.
The invention will be better understood from a reading of the following detailed description, taken in conjunction with the accompanying figures in the drawings in which:
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present invention. The same reference numerals in different figures denote the same elements.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “comprise,” “include,” “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein. The term “coupled,” as used herein, is defined as directly or indirectly connected in an electrical, mechanical, or other manner.
In one embodiment of the invention, an electrical power delivery system comprises a base having a first surface and a second surface spaced apart from the first surface by a first sidewall. The electrical power delivery system also comprises a platform extending away from the second surface of the base such that the platform covers a portion of but less than all of the second surface. The platform itself includes a third surface substantially parallel to the second surface and spaced apart from the second surface by a second sidewall that is substantially perpendicular to the second surface. A first electrical power outlet is located at the third surface, and a second electrical power outlet is located at the second sidewall. An electrical power cord is physically and electrically coupled either to the base or to the platform.
As will be described in detail below, the electrical power delivery system is constructed in such a way that the power cords that are plugged into the electrical power delivery system become arranged in an aesthetically pleasing and easily-managed pattern. Furthermore, the construction of the electrical power delivery system offers a relatively large number of electrical power outlets in a relatively small amount of space. Where the base of the electrical power delivery system is placed on the floor, the footprint of the electrical power delivery system is small and compact relative to the number of electrical power outlets provided.
Referring flow to the figures,
Electrical power delivery system 100 also comprises a platform 120 extending away from surface 112 of base 110 such that platform 120 covers a portion of but less than all of surface 112. Platform 120 comprises a surface 121 that is substantially parallel to surface 112 and is spaced apart from surface 112 by a sidewall 122. Sidewall 122 is substantially perpendicular to surface 112. In addition, sidewall 122 comprises a face 128 and a face 129 spaced apart from and substantially parallel to face 128. In the illustrated embodiment, face 128 is the vertical surface separating surface 112 and surface 121. Face 129 is not visible in
In the illustrated embodiment, platform 120 extends away from surface 112 such that face 119 of sidewall 113 and face 129 of sidewall 122 are continuous with each other. An advantage of such an embodiment is that faces 119 and 129 may for reasons of aesthetics, space management, or the like be placed flush against a wall, a table leg, or a similar vertical surface.
Electrical power delivery system 100 also comprises an electrical power outlet 130 at surface 121, an electrical power outlet 140 at sidewall 122, and a power cord 150 physically and electrically coupled to one of base 110 and platform 120. In the illustrated embodiment, electrical power outlet 140 is at face 128. Also in the illustrated embodiment, power cord 150 is physically and electrically coupled in such a way that it touches base 110 and platform 120, a situation that is hereby stated to be within the scope of the phrase “physically and electrically coupled to one of base 110 and platform 120.” In other words, the phrase “coupled to one of base 110 and platform 120” is not limited to a situation in which power cord 150 is coupled to only one of base 110 and platform 120.
As shown in
As is also shown in
Surface 121 and sidewall 122 are in physical contact with each other along a dividing line 125. Dividing line 125 can be, but is not necessarily, a physical line or other physical feature such as a change in surface contour. It may not exist at all except as an invisible and/or intangible boundary that separates surface 121 from sidewall 122. Dividing line 125 need not be a straight line, although it is a straight line in the illustrated embodiments
Adjacent ones of plurality of electrical power outlets 130 are spaced apart from each other by a distance 135, as shown. Similarly, adjacent ones of plurality of electrical power outlets 140 are spaced apart from each other by a distance 145. In the illustrated embodiment, distance 145 is greater than distance 135, although such spacing is not a requirement for all embodiments of electrical power delivery system 100,
Each one of plurality of electrical power outlets 140 comprises a neutral aperture 141, a hot aperture 142, and a ground aperture 143. Hot aperture 142 has a long axis 147 that is substantially perpendicular to dividing line 125. Ground aperture 143 is closer to dividing line 125 than are hot aperture 142 and neutral aperture 141. An advantage of the geometry just described will be discussed below in connection with
Electrical power delivery system 100 further comprises indicator lights 160 and an on/off switch 170. The locations of indicator lights 160 and on/off switch 170 as shown in
Section 251 has a first surface area. Section 252 has a second surface area. In the illustrated embodiment, the first surface area exceeds the second surface area. An advantage of the embodiment of
As illustrated in
The shape of electrical power delivery system 100, and the particular orientation of electrical power outlets 130 and 140 described above and shown in
Electrical power delivery system 100, by allowing cord arrangements in which all electric power cords exit in the same direction, represents a significant advance over existing power delivery systems. As an example, cord management, whether it is undertaken for reasons of safety, aesthetics, and/or convenience or for some other reason, becomes much easier when all cords are initially traveling in the same direction.
As mentioned above,
As illustrated in
Referring again to
In a manner similar to that discussed above for electrical power outlets 130 and 140, electrical power outlet 340 comprises a neutral aperture 341, a hot aperture 342, and a ground aperture 343, hot aperture 342 has a long axis 347, and long axis 347 is substantially perpendicular to dividing line 325. Furthermore, ground aperture 343 is closer to dividing line 325 than are hot aperture 342 and neutral aperture 341.
The described orientation of electrical power outlets, as well as other orientations to be described below, offer the same advantages that were described above in connection with
A step 520 of method 500 is to form a platform comprising a third surface substantially parallel to the second surface and spaced apart from the second surface by a second sidewall substantially perpendicular to the second surface. As an example, the platform can be similar to platform 120, first shown in
A step 530 of method 500 is to attach the platform to the base such that the platform extends away from the second surface of the base and covers a portion of but less than all of the second surface.
A step 540 of method 500 is to mount a first electrical power outlet in the platform such that a face of the first electrical power outlet is accessible at the third surface. As an example, the first electrical power outlet can be similar to electrical power outlet 130, first shown in
A step 550 of method 500 is to mount a second electrical power outlet in the platform such that a face of the second electrical power outlet is accessible at the second sidewall. As an example, the second electrical power outlet can be similar to electrical power outlet 140, first shown in
A step 560 of method 500 is to physically and electrically couple an electrical power cord to one of the base and the platform. As an example, the electric power cord can be similar to power cord 150, first shown in
In one embodiment, steps 510, 520, 530, 540, and 550 are performed simultaneously with each other in an injection molding process.
Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made without departing from the spirit or scope of the invention. Various examples of such changes have been given in the foregoing description. Accordingly, the disclosure of embodiments of the invention is intended to be illustrative of the scope of the invention and is not intended to be limiting. It is intended that the scope of the invention shall be limited only to the extent required by the appended claims. For example, to one of ordinary skill in the art, it will be readily apparent that the electrical power delivery system discussed herein may be implemented in a variety of embodiments, and that the foregoing discussion of certain of these embodiments does not necessarily represent a complete description of all possible embodiments. Rather, the detailed description of the drawings, and the drawings themselves, disclose at least one preferred embodiment of the invention, and may disclose alternative embodiments of the invention.
All elements claimed in any particular claim are essential to the invention claimed in that particular claim. Consequently, replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required, or essential features or elements of any or all of the claims.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under: the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims, and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This is a continuation application of U.S. patent application Ser. No. 11/146,778, filed Jun. 6, 2005 now U.S. Pat. No. 7,442,090.
Number | Name | Date | Kind |
---|---|---|---|
5562488 | Neiser et al. | Oct 1996 | A |
6024588 | Hsu et al. | Feb 2000 | A |
6443772 | Chen | Sep 2002 | B1 |
6666712 | Kramer | Dec 2003 | B1 |
6811281 | Hsiao | Nov 2004 | B1 |
6929514 | Chuang | Aug 2005 | B1 |
6931702 | Mitsuhashi et al. | Aug 2005 | B2 |
6948972 | Laukhuf | Sep 2005 | B2 |
7457106 | Ewing et al. | Nov 2008 | B2 |
20040142601 | Luu | Jul 2004 | A1 |
20060274484 | Mori et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090023344 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11146778 | Jun 2005 | US |
Child | 12238195 | US |