The invention relates to an electrical power supply system, in particular for powering electrical equipment carried by a rotating support. The invention also relates to an engine fitted with such a power supply system.
The invention serves in particular to provide means for electrically powering equipment carried by the blades of a rotor of an engine, or the blades of two rotors rotating in opposite directions of an engine, such as deicing equipment for the blades or systems for electrically positioning such blades.
Electrical power supply systems for such devices are known that transmit electricity from the stationary portions of an airplane or of the engine with the help of brush devices, e.g. as described in Document
U.S. Pat. No. 4,621,978. Nevertheless, those devices are heavy, not very reliable, and require regular maintenance together with a system for cooling them in operation. Problems are also found involving compatibility with the oily substances present in their environment.
Rotary transformers are also known that also serve to transmit electricity from the stationary portions of the airplane or the engine. There exist such transformers operating at low frequency (less than 1 kilohertz (kHz)) that possess an architecture of U-shaped or E-shaped type, with topologies seeking to solve the problem of laminating materials. In contrast, in high frequency ranges (greater than 1 kHz), at high power (greater than 5 kilowatts (kW)), laminated materials lose their properties when the temperature rises (typically above 200° C.). This gives rise to high levels of losses and to transformers that are sensitive to vibration and to impacts. An example of a document describing a rotary transformer in the specified context is WO 2010/081654.
Also known is Document FR 2 962 271, which teaches delivering electricity to a rotating support by using an asynchronous machine operating as a self-excited generator.
The invention seeks to solve the above-mentioned problems and to provide a solution that is reliable, that needs little maintenance, that is light in weight, and that occupies limited space.
For this purpose, there is provided an electrical power supply comprising an asynchronous machine, an arrangement for driving a rotor of the asynchronous machine in rotation by means of a rotor of an engine, and an electrical connection for powering electrical equipment by means of said rotor of the asynchronous machine, the system being characterized in that the asynchronous machine is also arranged to receive alternating current (AC) electrical power via a stator of said asynchronous machine, and it presents, over a predetermined range of drive speeds of the rotor of the asynchronous machine under drive by said rotor of the engine, efficiency in transferring electrical power from said stator to said rotor that is privileged relative to the efficiency with which rotary mechanical power is converted into electrical power.
By making this design choice, an asynchronous machine can be put into place for powering electrical equipment via its rotor, which machine is of weight and volume that are considerably smaller than the weight and volume of an asynchronous generator of the kind described in the prior art. The advantage of using an asynchronous machine compared with using a U-core or an E-core type rotary transformer is conserved since there is no problem of laminating materials. Maintenance requirements are very low.
In a particular embodiment, the asynchronous machine has a progressive wave winding, at least in a rotor or in a stator. This serves to increase the reliability of the asynchronous transformer.
In a particular embodiment, the asynchronous machine has a winding with only one conductor bar per slot. The number of connections required is thus reduced, thereby making it possible to reduce the weight and the size of the device.
In another aspect, the invention also provides an engine having a rotor carrying electrical equipment, the rotor including at least one electrical power supply system as mentioned above, the electrical equipment being connected to the electrical connection of the power supply system. Such a motor presents improved performance because it makes use of a device that is lighter in weight, more compact, and more reliable for the purpose of electrically powering electrical equipment carried by the rotor of the engine.
In various possible arrangements, said stator of the asynchronous machine is arranged to receive AC electrical power from the engine via a generator, from an accessory gearbox (AGB) of the engine, or from an AC electrical power supply. In other possible arrangements that are different, said stator of the asynchronous machine is stationary relative to the nacelle of the engine, or stationary relative to a second rotor of the engine.
In a particular embodiment, the engine includes a second rotor carrying second electrical equipment, the engine having at least one second electrical power supply system as mentioned above, the second electrical equipment being connected to the electrical connection of the second power supply system, the two electrical power supply systems being arranged in parallel to receive AC electrical power from a common source via respective stators. An unducted fan having two contrarotating rotors can thus be equipped in this way.
In various possible arrangements, a connection between the electrical equipment and the electrical connection to the power supply system passes via a mechanical power gearbox, or via a rotary transformer, or via a generator, or via a second rotor of the engine that rotates in the opposite direction to the first rotor.
The electrical equipment may in particular comprise a device for deicing a blade or a system for electrically positioning a blade.
The invention is described below with reference to the following accompanying figures:
By way of example, the rotor 110 may be provided with balanced three-phase winding. For this purpose, the machine possesses the same number of pairs of poles on the stator and on the rotor, or it possesses a winding that is capable of adapting to balanced three-phase electricity.
For example, one possible design for the system of
The predetermined range of speeds for the rotor of the asynchronous machine being driven by the rotor of the engine over which efficiency in the transfer of electrical power from the stator 120 to the rotor 110 is privileged relative to the efficiency with which rotary mechanical power is converted into electrical power is arranged around a rotation frequency of 15 Hz, e.g. the range of 10 Hz to 20 Hz, or the range of 14 Hz to 16 Hz. In the example shown, the optimization effect is revealed by the low value of losses (4 kW) combined with 3.3 kW of power being taken off from the power delivered by the engine, which power is far from being optimized since power takeoff has specifically been neglected in order to optimize the transformer effect. The power delivered to the electrical connection 140 is regulated by adjusting the power applied by the electrical connection 150. Under certain conditions, the power required at the stator may be less than the output power from the rotor, because of the power delivered by the engine. The load may be observed via the asynchronous machine in order to determine its operating state.
Power may be transmitted with a rotor that is stationary, in which case operation is solely of transformer type.
It is specified that the asynchronous machine may have topology of the type involving radial or axial flux variation.
The same type of winding may be used both on the stator and on the rotor, however it is also possible to use different windings on the rotor and on the stator. The winding is a progressive wave winding which makes it possible to use only one conductor bar per rotor or stator slot, thereby reducing the risks of inter-bar short circuits.
In
Thus, conductor portions 301, 302, and 303 are inserted in successive slots 201, 202, and 203 forming a first pole. At the outlet from the respective slots, all three of the conductors 301, 302, and 303 are bent at right angles in the same direction and are passed via slots 212, 211, and 210 respectively (i.e. along the periphery of the rotor or the stator, the first conductor to leave its slot is subsequently the last to enter into another slot).
The conductor portions between the slots constitute conductor overhangs representing wasted volume and weight, and using a progressive wave winding makes it possible to reduce their lengths. The conductors 304, 305, and 306 connected in parallel to a second phase of the three-phase AC voltage occupy respective slots 204, 205, and 206, and after being bent through a right angle and occupying overhang type sections, they return to respective slots not shown and referenced 214 and 213 in the figure (once more the first conductor to leave its slot is subsequently the last to enter into the next slot). The figure also shows conductors 307, 308, and 309 that occupy the slots 207, 208, and 209 and that are connected in parallel to the third phase of the three-phase voltage. The overhangs of the conductors 301, 302, and 303 between the slots 201, 202, 203 and 210, 211, 212 are arranged in this embodiment at a distance from the slots, while the overhangs of the conductors 304, 305, and 306 between the slots 204, 205, 206 and 213, 214 are located close to the slots.
References 410 and 420 are used to show the free ends of one of the three conductors. The same connection scheme is used for the two other connectors. On approaching one of the two free ends that has the reference 410, the conductor crosses two portions of the same conductor making complete turns around the periphery prior to following them in parallel manner, whereas on approaching a second one of the two ends, referenced 420, the conductor follows the two portions of the same conductor following complete turns of the periphery in parallel manner without crossing them. The connections close to the free end with crossing are referenced 411 and 412 and the connections close to the free end without crossing are referenced 421 and 422.
AC electricity is obtained either from the electricity network 610 of the aircraft, or from the AGB 615, or from the engine 620 (free turbine, first rotor or aft (Aft) rotor, or second rotor or forward (Fwd) rotor. When using the AGB or a rotor, a respective generator 616 or 621 is used. A switch 625 under the control of a control system 626 makes it possible optionally to select the electricity source. If necessary, it includes a power converter for formatting the power for feeding to the asynchronous machine. The electrical power is transferred from the stationary reference frame A to the two contrarotating rotary reference frames B and C by two transformers 630 and 631 connected in parallel with each other at the outlet from the switch 625. The reference frames B and C are the two rotors Fwd 640 and Aft 641, respectively. The electrical power is finally taken to the devices that are for powering on the blades of these rotors, given respective references 650 and 651.
The transformers 630 and 631 are electrical power supply systems as described with reference to
A variant of the embodiment of
Electrical power is initially transferred from the stationary reference frame A to the rotary reference frame B in parallel by a transformer 810, and by a transformer 820, which may also be a generator 820. The reference frame B is the reference frame of the rotor Fwd 640. The blades 650 of the rotor 640 are powered by the transformer 810. A transformer 830 transfers the power delivered by the transformer or by the generator 820 from the reference frame B to the reference frame C. The reference frame C is the reference frame of the rotor Aft 641. The blades 651 of the rotor 641 are powered by the transformer 830. The transformers 830 and 810, and optionally the transformer 820, are electrical power supply systems as described with reference to
This series connection serves to mitigate certain integration constraints.
A variant of the
In this variant, the power supply lines avoid the PGB mechanism.
The invention is described above with reference to embodiments that are not limiting, and it extends to any variant within the ambit of the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
12 54612 | May 2012 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2013/051050 | 5/14/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/175098 | 11/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4927329 | Kliman | May 1990 | A |
5694026 | Blanchet | Dec 1997 | A |
6032546 | Stone | Mar 2000 | A |
7432622 | Griepentrog et al. | Oct 2008 | B2 |
20040155537 | Nakano | Aug 2004 | A1 |
20060087123 | Stout | Apr 2006 | A1 |
20060267523 | Seelig | Nov 2006 | A1 |
20080067984 | Anghel | Mar 2008 | A1 |
20100013343 | Bi | Jan 2010 | A1 |
20110031840 | Huth | Feb 2011 | A1 |
20110050377 | Bjerknes et al. | Mar 2011 | A1 |
20110290942 | Imbert et al. | Dec 2011 | A1 |
20120133142 | Langel | May 2012 | A1 |
20120133468 | Bedini | May 2012 | A1 |
20130200623 | Powell | Aug 2013 | A1 |
20140035402 | Bertotto | Feb 2014 | A1 |
20140291987 | Dooley | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2 390 183 | Nov 2011 | EP |
99 04403 | Jan 1999 | WO |
2009 128724 | Oct 2009 | WO |
2011 000937 | Jan 2011 | WO |
Entry |
---|
International Search Report Issued Jul. 3, 2013 in PCT/FR13/051050 Filed May 14, 2013. |
Number | Date | Country | |
---|---|---|---|
20150108760 A1 | Apr 2015 | US |