This invention relates to an electrical rotary joint, or electrical slip ring, and more particularly to an apparatus having a plurality of conductive gears to transfer electrical power, and/or signal(s) between relatively rotatable objects.
Electrical rotary joints, or electrical slip rings are electromechanical devices that consist of rotational (rotors) and stationary (stators) members. They allow the transmission of electrical signals and power from their rotors to stators or vise verse.
A conventional electrical slip ring consists of conductive rings mounted on a rotor and insulated from it. Fixed brushes run in contact with the rings, rubbing against the peripheral surfaces of the rings, transferring electrical power or signals to the stator.
The sliding contact between the rings and brushes during this continuous rotation of the rotor causes the wear on the slip rings and generate heat, even noise in the system. Therefore, even properly operating slip rings require frequent maintenance at significant cost. Sometimes the debris of slip rings causes an electrical insulation breakdown between adjacent circuits.
One of the objectives in the current invention is to eliminate the sliding contacts between brushes and rings. reduce the friction and wear, as well as to minimize the need for maintenance so that the electrical rotary joint not only can work at much higher speed and last much longer, but also it could be used in any harsh environments such as extreme temperatures, vibration, and shock.
Gears are used in a variety of mechanical devices. Gears are toothed members which transmit power/motion between two shafts by meshing without any slippage. If the gears are made of conductive material, they can also transmit electrical signal/power, during their rotational motion. Although there is friction in the gear meshing, the efficiency related to tooth friction losses for single tooth mesh is usually as high as 98˜99.5%. So it is ideal to replace brushes and rings in electrical slip ring with conductive gear meshing.
A simple planetary or epicyclic gear mechanism consists of a sun gear in the center. an internal or ring gear with a common axis with sun gear, and at least one planet gear. The planet gear is located between the sun gear and ring gear, and meshes with both the sun gear and the ring gear. If the ring gear is stationary, when sun gear rotates, the planet gear not only rotates about its axis, its axis also rotate around the axis of sun gear.
In stead of employing the sliding motion between the ring and the brush in electrical slip ring, the current invention makes use of a plurality of conductive gears, particularly a planetary gear mechanism, to transfer electrical power, and/or signal(s) between relatively rotatable objects.
In
As shown in
There is a variety of gear tooth profiles available in gear industry. Examples of explanation in current invention include, but are not limited to: involute tooth profile, cycloid tooth profile, and Novikov, Wildhaber or Circular Arc Tooth Profile.
The involute gear profile is the most commonly used in gear industry today. In involute gears, the profiles of the teeth are involutes of a circle. The kinematics of a gear meshing pair with involute profile is best described as rolling/sliding contact with pure rolling at the pitch line. Although there is friction in the gear meshing, the efficiency related to tooth friction losses for single tooth mesh is usually as high as 98˜99%.
In cycloidal gears, the contact takes place between a convex flank and concave surface. This condition results in the mostly rolling contact, larger contact area, and less wear in cycloidal gears. So cycloidal teeth have longer life and it is a better option for electrical rotary joint.
The Novikov gears have circular tooth surfaces. For a meshed gear pair, normally one of the gears has a convex tooth profile and another gear tooth has a concave tooth profile, thus leading to pure rolling action at the contact for these gears. The efficiency for Circular Arc Tooth Profile is as high as 99.5%.
There is another embodiment, illustrated in
While two preferred embodiments of the invention have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the claims.
This application claims priority of U.S. Provisional Patent Application No. 61/376,081 filed date: Aug. 23, 2010.
Number | Date | Country | |
---|---|---|---|
61376081 | Aug 2010 | US |