Information
-
Patent Application
-
20030175524
-
Publication Number
20030175524
-
Date Filed
December 09, 200222 years ago
-
Date Published
September 18, 200321 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
A magnetic steel sheet with an insulating coating having a good punchability, high sliding performance, excellent handleability in processing, and good uniformity and adhesiveness is achieved by forming a chromium-free insulating coating containing 20 parts by mass or more and 90 parts by mass or less of fluorocarbon resin as a top layer coating of the magnetic steel sheet, and preferably making the kinetic friction coefficient of a surface of the insulating coating 0.3 or less.
Description
TECHNICAL FIELD
[0001] The present invention relates to a magnetic steel sheet having an insulating coating. Although the magnetic steel sheet having the insulating coating is often subjected to processing, mainly slitting, punching, and so on, for use in making laminated cores, the invention is not intended to be limited to such application.
[0002] The invention, in particular, intends to achieve a magnetic steel sheet with the insulating coating, which has a high punchability, good sliding performance among steel sheets, high adhesiveness, anti-adherability of water drops and dirt as a cause of rust, and high corrosion resistance.
[0003] Further, the invention relates to a chromium-free coating suitable for use in the top layer of the above insulating coating of the magnetic steel sheet.
BACKGROUND ART
[0004] While the insulating coating of the magnetic steel sheet for use in motors and transformers and the like is required to have a certain interlayer resistance, not limited to that, but various other properties are required in view of convenience in processing and storage. Since application of the magnetic steel sheet is versatile, various types of insulating coating have been developed depending on the application.
[0005] The insulating coating can be classified broadly into three types: (1) an inorganic coating sustainable for stress relief annealing, in greater accounts of weldability and heat resistance, (2) a semi-organic coating which consists of inorganic with some organic materials, sustainable for the stress relief annealing, with the aim of combining the punching quality and weldability, and (3) a special-purpose organic coating unsustainable for the stress relief annealing. Regarding the punching quality (that is, a capability of reducing abrasion of the punching die), typically, a tendency of (3), (2), (1) in order is regarded according to better quality.
[0006] Recently, with improvement of performance of motors and transformers, performance of the magnetic steel sheet tends to improve accordingly. Since a magnetic steel sheet having excellent magnetic properties has an increased content of Si and the like, there has been a problem that the punching quality becomes bad because of increased hardness of the steel sheet.
[0007] A magnetic steel sheet having a low hardness is also required to have a more excellent punching quality to achieve cost reduction by decreasing number of times of die-grinding.
[0008] As the semi-organic coating in the above (2), a coating having chromate as a matrix of the coating and resin, such as acrylic resin, epoxy resin, polyvinylacetate, and the like, added to the matrix is mainly used because of comparatively good material characteristics (insulation performance, adhesiveness of coating, corrosion resistance, and the like). Then, as a method for improving the punching quality of the semi-organic coating, use of fluorocarbon-based resin as the resin added to the chromate is proposed.
[0009] For example, Japanese Patent Publication No. 4-43715/1992 discloses a method for forming the insulating coating, in which a fluorocarbon resin or polyethylene is dispersed in the chromate (solution), and then the fluorocarbon resin is baked to be concentrated on the surface. In addition, Japanese Patent Publication No. 7-35584/1995discloses a method for forming the insulating coating, in which a treatment liquid, where a phenolic resin, perfluoroalkyloxyethyleneethanol, and the like are dispersed in the chromate, is coated and then baked. Further, Japanese Patent Laid-Open No. 7-278834/1995, Japanese Patent Laid-Open No. 7-286283/1995, and Japanese Patent Laid-Open No. 7-331453/1995 also disclose the magnetic steel sheet in which the fluorocarbon-based resin is present as the outer or inner layer of the resin particles in the inorganic coating consisting of chromate.
[0010] Although these methods improve the punching quality of the magnetic steel sheet, the improvement was not sufficient for the magnetic steel sheet having a high hardness. Even when these methods are used for the magnetic steel sheet having a low hardness, still higher punching quality has been also required.
[0011] In addition, in these methods, the fluorocarbon resin was unstable and thus uniform and well-adhesive coating was not obtained.
[0012] On the other hand, in case the organic coating like (3) was coated, the improvement of the punching quality was also inadequate.
[0013] The punched, magnetic steel sheets are stacked and used for cores. In such stacking, the steel sheets must be slid among them to align edges of the stacked steel sheets, however, a poor sliding performance prevents the processing. On the contrary, it is known that the sliding performance is improved by making the surface of the steel sheets dull-like (pear-surface-like) or giving an insulating coating having a rough surface so that air easily enters the space between the steel sheets to reduce sticking of the steel sheets.
[0014] On the other hand, with improvement of the performance of the magnetic steel sheet, the thickness of the sheets tends to reduce and number of sheets stacked increases accordingly, thus the sliding performance of the steel sheets is important in the stacking. In this case, for the traditional dull steel sheets, performance of the magnetic steel sheet becomes bad in view of its magnetic properties, and for the steel sheets with the insulating coating having a roughed surface-roughness, there has been a problem that while the stick among the steel sheets reduces, dust is liable to generate.
DISCLOSURE OF THE INVENTION
[0015] The invention aims to provide a magnetic steel sheet with an insulating coating, which has an improved punching quality, high sliding performance, excellent handleability in processing, and a high uniformity and adhesiveness. In particular, regarding the punching quality, whether the coating is used for a steel sheet material with a low hardness, or with a high hardness, the punching quality is significantly improved.
[0016] The invention is a magnetic steel sheet with an insulating coating, having an excellent processability, sliding performance, and adhesiveness, characterized by chromium-free or containing no chromium (substantially 1.0% by weight or less) and containing 20 percent by mass or more and 90 percent by mass or less of the fluorocarbon resin. In addition, the insulating coating, which is suitable for the top layer of the insulating coating on the magnetic steel sheet, is a chromium-free insulating coating characterized by containing no chromium and containing 20 percent by mass or more and 90 percent by mass or less of the fluorocarbon resin.
[0017] In the invention, the kinetic friction coefficient of the surface of the insulating coating is preferably 0.3 or less.
[0018] In the invention, preferably, the fluorocarbon resin is at least one selected from the group consisting of polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinylether copolymers (PFA), and tetrafluoroethylene-hexafluoropropylene copolymers (FEP).
BRIEF DESCRIPTION OF THE DRAWINGS
[0019]
FIG. 1 is a graph showing evaluation results of the punching quality and adhesiveness of the magnetic steel sheets after punched.
BEST MODE FOR CARRYING OUT THE INVENTION
[0020] Hereinafter, the invention is further described in detail.
[0021] In the invention, the magnetic steel sheet (electrical iron sheet) is used as a starting material. A known magnetic steel sheet can be used, which may be unidirectionally grain-oriented, or non-oriented, or bidirectionally grain-oriented. The unidirectionally grain-oriented, magnetic steel sheet may or may not have a forsterite coating and/or phosphate-based coating, thereon.
[0022] Although it is preferable to give the top layer coating containing the fluorocarbon resin as described later directly on these materials, it is not intended to inhibit to locate a further different coating layer (preferably insulating coating) between the top layer and said materials. As such coating layer, for example, the phosphate-based coating and chromate-based coating are preferable, which may or may not contain the resin.
[0023] The chemical composition of the magnetic steel sheet of the invention is not particularly limited. The grain-oriented (unidirectionally or bidirectionally), magnetic steel sheet includes, for example, a steel sheet having 2 to 4% by mass of Si, 0.4% by mass or less of Mn, and 0.1% by mass or less of Al, which contains totally 0.5% by mass or less of one or two or more of inhibitor elements (Mn, Se, S, Al, N, Bi, B, Sb, Sn, and the like) as required (individual content of Mn and Al is according to the above). The non-oriented, magnetic steel sheet includes, for example, a steel sheet having 4% by mass or less of Si (preferably, 0.05% by mass or more), 1.0% by mass or less of Mn, 3.0% by mass or less of Al, 0.01% by mass or less of C, 0.5% by mass or less of P, 0.1% by mass or less of S, and 0.1% by mass or less of Ti, and having totally 0.5% by mass or less of one or two or more of Zr, V, Nb, Ca, Sb, Sn, and Cu as required. In each steel sheet, the rest is iron and incidental impurities.
[0024] In particular, when Si is 2.5% by mass or more, the magnetic steel sheet exhibits high hardness, and when Si is less than 2.5% by mass, the magnetic steel sheet exhibits low hardness.
[0025] The thickness of the magnetic steel sheet of the invention is not particularly limited. A typical thickness, about 0.05to 1.0 mm is preferable.
[0026] On the top layer of the magnetic steel sheet of the invention, the chromium-free insulating coating containing the fluorocarbon resin (hereinafter referred as top layer coating) must be formed. The fluorocarbon resin includes a polytetrafluoroethylene (PTFE) resin, a tetrafluoroetylene-perfluoroalkylvinylether copolymer (PFA), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), a trifluoroethylene resin, a fluorovinylidene resin, a fluorovinyl resin, a tetrafluoroethylene-ethylene copolymer, and copolymers of these polymers and a ethylene resin. Among them, one or two or more of PTFE, PFA, and FEP, which have a low friction coefficient and excellent non-stick, can be preferably contained.
[0027] On the inner layer, the above forsterite coating or phosphate-based coating may be present, or only the coating containing the above fluorocarbon resin may be present. Typically, these inner layers are also insulative, forming the insulating coating together with the top layer.
[0028] The forsterite coating is formed by coating an annealing separator having MgO as base on the surface and reacting it with base iron in finishing annealing, and its preferable composition is a composition that forsterite (Mg2SiO4) is a main component (50% by mass or more for the entire layer of interest), and the rest contains iron oxide and subsidiary impurities. In addition, the preferable composition of the phosphate-based coating is a composition that the phosphate, such as magnesium phosphate, aluminum phosphate, and calcium phosphate, is the main component (preferably containing 50% by mass or more), and the rest further contains any additive such as chromicacid, chromate, silica, and boric acid as required.
[0029] While the form of the fluorocarbon resin before forming the coating is not particularly limited, the resin may be used in liquid solution state dissolved in organic solvent (preferably pyrolidone-based solvent), dispersed state (dispersion) or emulsified state (emulsion) with nonionic surfactants and the like, fine powder state, and molding powder state, etc. In consideration of dispersibility, it is preferably used in the liquid solution state, dispersion state, or emulsion state.
[0030] The invention improves the sliding performance of the coating surface by using a phenomenon that the fluorocarbon resin concentrates on the surface through from the coating step of the insulation coating to the baking step. Therefore, the fluorocarbon resin content in the top layer coating must be 20 parts by mass or more and 90 parts by mass or less for 100 parts by mass of the top-layer insulating coating, that is, from 20 to 90% by mass for the entire top-layer coating on average. Here, the reason why the average value is employed is that the fluorocarbon resin may concentrate on the surface as described before. Below 20 percent by mass, the effect for improvement of the punching quality to be expected by the invention cannot be achieved, on the other hand, over 90 percent by mass, the adhesivenee of the coating becomes bad. The preferable content of the fluorocarbon resin is from 30 to 80 percent by mass. This aspect is obvious in FIG. 1 showing a variation of the punching quality and coating adhesiveness against the fluorocarbon resin content in the grain-oriented, magnetic steel sheet.
[0031] In FIG. 1, a grain-oriented, magnetic steel sheet (in which Si is 3.3%, Mn is 0.07%, and Al is less than 0.001%, and Sb, Sn, and the like, which will remain in product sheets among the inhibitors except the above, are 0.5% or less in total, in mass %, and the rest is iron and impurities) was used as the magnetic steel sheet, on which the forsterite coating as the bottom layer was formed, the phosphate-based coating was formed thereon, and the insulating coating comprising the fluorocarbon resin (PTFE) and organic resin (PES) as the top layer was formed still thereon.
[0032] Other components than the fluorocarbon resin in the top surface coating of the magnetic steel sheet of the invention are preferably organic resin and/or inorganic compounds, of which content in the top layer coating is 10 to 80 percent by mass, and preferably 20 to 70 percent by mass.
[0033] As the organic resin other than the fluorocarbon resin, one or a mixture of two or more of an epoxy resin, an acrylic resin, a vinylacetate resin, a phenilic resin, a polyethersulfone resin (PES), a polyphenylenesulfide resin (PPS), a polysulfone resin, a polyallylsulfone resin, a polyetherketone resin (PEEK), a polyetherimide resin, a polyamideimide resin, and the like can be used. By adding such organic resin, the organic resin effectively acts as the matrix to stabilize the coating. Among them, PES, PEEK, PPS, the polysulfone resin and the like are heat-resistant thermoplastic resin, so that they are useful in baking at high temperature to concentrate the fluorocarbon resin having a high melting point such as PTFE, PFA, FEP, on the top layer. This provides the effect for improvement of the adhesiveness to the substrate (surface of the under layer coating or steel sheet) , which is further preferable. Particularly, a combination of PTFE and PES, or PTFE and PPS is preferable.
[0034] The inorganic compounds include phosphates such as magnesium phosphate, aluminum phosphate, and calcium phosphate; inorganic oxides of elements of the group 3 or 4 in the periodic table such as alumina and silica; and metal compounds of elements of the group 3 in the periodic table such as aluminum compounds. The phosphate, in particular, such as magnesium phosphate or aluminum phosphate is preferable. One or a mixture of two or more of these may be used.
[0035] In the invention, since the above top layer coating is chromium-free, chromium and chromium compounds are not contained (although chromium is scarcely present as elemental substance after formation of the coating because it has a high reactivity). Therefore, the chromium compounds are excepted from said inorganic compounds. The chromium compounds are well adapted to the steel sheets and frequently used as the insulating coating material of the magnetic steel sheets. However, according to the study by the inventors, since the chromium compounds are highly oxidative, it cannot disperse the fluorocarbon resin stably, so that the fluorocarbon resin will cause agglomeration/separation. In addition, to disperse the fluorocarbon resin, modification of the fluorocarbon resin (introduction of hydrophilic group such as hydroxyl group , ethylene oxide, carboxylic acid, amine, and the like using the methods such as co-polymerization and graft-polymerization) or excessive emulsification/dispersing is required, resulting that the functions of the fluorocarbon resin deteriorate and the original performance is damaged. Therefore, the formed coating is uneven, poor in adhesiveness, and inadequate in the effect for improvement of punching quality and sliding performance. Accordingly, the insulating coating of the invention must not contain chromium and chromium compounds.
[0036] The thickness of the insulating coating containing the fluorocarbon resin of the invention, or the thickness of the top layer is not particularly limited, however, when the coating mass is too small, the coating tends to be uneven and the surface of the under layer coating or steel sheet tends to expose, thus the advantage of the invention is possibly inadequate. When the coating mass is too large, coating workability may deteriorate, for example, blister may occur in the baking. The preferable average thickness of the insulating coating of the top layer containing the fluorocarbon resin is 0.01 to 20 μm, and more preferably 0.1 to 5.0 μm
[0037] When an inner layer is included, the average thickness of the inner layer is preferably about 0.1 to 20 μm. Here, the average thickness was obtained by taking an enlarged photography of the cross section of the coating given from a mold-polishing or freeze-fracturing, measuring the thickness of the target coating at ten points, and taking the arithmetic average of them. It is also acceptable to measure decrease of the weight per unit area (coating amount) in case the target coating is released with solvent or alkaline solution, take a correlation of the decrease of the weight with the above average thickness, and calculate the average thickness from the coating amount using the correlation line (calibration line).
[0038] The coating of the invention may be effectively given either on both sides or on only one side. When the coating of the invention is given on both sides, one side need not have the same coating thereon as that on the other side. When it is given only on one side, any coating other than the invention can be freely given on the other side.
[0039] To keep the sliding performance and formability of the insulating coating good, the kinetic friction coefficient of the insulating coating containing the fluorocarbon resin of the invention is made preferably 0.3 or less, more preferably 0.25 or less, and still more preferably 0.2 or less.
[0040] Here, to hold the kinetic friction coefficient among the insulating coatings containing the fluorocarbon resin within a predetermined low value, it is preferable to concentrate the fluorocarbon resin on the surface by heat treatment. For example, when the top layer coating of the invention is given in the steps from application to baking, the baking temperature is preferably equal to the melting point (for example, 327° C. in PTFE), or glass transition temperature of the fluorocarbon resin or more. However, since it is desirable to determine the maximum of the baking temperature not to decompose the fluorocarbon resin and matrix (the organic resin and/or inorganic compounds other than fluorocarbon resin), when the decomposition temperature of the matrix is lower than the melting point or glass transition temperature of the fluorocarbon resin, it is preferable to perform the baking at a temperature as close to the decomposition temperature of the matrix as possible.
[0041] More preferably, the baking temperature is equal to the melting point (for example, 277° C. for PPS) or glass transition temperature (for example, 225° C. for PES) of the matrix or more. That is, for example, in case of a composition containing PTFE and one or two of PES and PPS, the baking condition is preferably in order of 330 to 480° C. for in order of 10 seconds to 2 hours. Here, the maximum of the baking temperature, 480° C., was set to be close (just under side) to the minimum decomposition temperature of the above resin constituting the coating. More preferable baking condition is in order of 350 to 470° C. for in order of 20 seconds to 1 hour, from which a value of 0.1 of the kinetic friction coefficient can be achieved when the composition is in a preferable range.
[0042] Next, a formation method of the coating for achieving the magnetic steel sheet of the invention is described.
[0043] In the invention, to improve the adhesiveness of the insulating coating containing the fluorocarbon resin to the magnetic steel sheet, it is preferable to perform a pretreatment such as primer coating on the magnetic steel sheet. Here, in the primer, other components than the fluorocarbon resin in the top layer coating are preferably used as main component. For example, when PTFE and PES are used for the top layer coating, PES is preferably used. Also, when PTFE and PPS are used for the top layer coating, PPS is preferably used.
[0044] The coating solution containing the above agents, namely the fluorocarbon resin and organic resin and/or inorganic compounds are applied and baked to the magnetic steel sheets to form the coating. The ratio of the fluorocarbon resin and other solid contents in the formed coating is substantially equal to the ratio of them in the solid contents in the coating solution. Form of the coating solution, not limited particularly, may be either of solvent type, aqueous solution type, dispersion type, emulsion type, and slurry-type. Here, by adjusting the fluorocarbon resin content in the solid content of the coating solution, the insulating coating containing the fluorocarbon resin of the amount within a scope of the invention can be formed.
[0045] In the formation of the insulating coating, as the applying method of the coating solution, various methods including roll-coater method, flow-coater method, spray-coating, knife-coater method, and the like are usable, these methods being generally used industrially. Also, for the baking methods, hot-air type, infra-red type, induction heating type, radiant-tube type, direct-fire type, and the like as typically practiced are usable. The preferable baking temperature is 150 to 500° C.
[0046] To further improve the performance of the coating, additives such as anti-corrosive agents and pigments (added for coloring and/or enhancement of insulation performance) may be blended into the coating solution. The total amount of the additives is preferably 300 parts by mass for 100 parts by mass of the top layer insulating coating (without additives). Particularly, 3 parts by weight or more of additives are effectively added.
[0047] Also, when the inner-layer coating is formed, it is preferable, as the case of the top layer, to apply the coating solution using the typical industrial methods, including the roll-coater method, flow-coater method, spray-coating, and knife-coater method, and then bake the coated solution by the methods including the hot-air type, infra-red type, induction heating type, radiant-tube type, and direct-fire type oven. However, regarding the forsterite layer, it is typically formed by applying the annealing separator having MgO as the main component on the surface before the finishing annealing and then performing the finishing annealing in manufacturing of the magnetic steel sheet.
[0048] While the magnetic steel sheet of the invention is usable for any type of punching application because it is a magnetic steel sheet with the insulating coating having a high punching quality and sliding performance, and a high adhesiveness, in particular, it is preferably usable for stators of motors, rotors, EI cores of transformers, magnetic shield materials, and the like.
EXAMPLES
[0049] Hereinafter, advantages of the invention are specifically described according to examples.
EXAMPLES OF THE INVENTION: 1-69, COMPARATIVE EXAMPLES: 1-36
[0050] The coating solution containing the components listed in Table 1 was coated on a unidirectional (grain-oriented) magnetic steel sheet comprising 3.3% by mass of Si, 0.07% by mass of Mn, less than 0.001% by mass of Al, and the rest of Fe and impurities; a grain-oriented, magnetic steel sheet comprising 3.0% by mass of Si, 0.2% by mass of Mn, less than 0.001% by mass of Al, and the rest of Fe and impurities; a non-oriented magnetic steel sheet comprising 3.0% by mass of Si, 0.2% by mass of Mn, 0.2% by mass of Al, and the rest of Fe and impurities; and a non-oriented magnetic steel sheet comprising 0.25% by mass of Si, 0.25% by mass of Mn, 0.25% by mass of Al, and the rest of Fe and impurities, each steel sheet having a thickness of 0.35 mm, to form a top layer insulating coating having a thickness of 2 μm. Here, a coating of a forsterite coating (lower layer, 4 μm in thickness) and phosphate-based coating (upper layer, 3 μm in thickness), a coating of only a forsterite coating (4 μm in thickness), a coating of only a phosphate-based coating (1 μm in thickness), and a coating of a chromate-based coating (0.3 μm in thickness), were prepared respectively as the under coating. Regarding the surface roughness of the steel sheets, the steel sheet having an average roughness Ra of 0.5 μm or less was used.
[0051] The solution for the top layer coating was an organic solvent type, and a pyrolidone-based solvent was used as the solvent. The roll-coater was used to apply the solution, and the applied solution was baked at a sheet temperature of 400° C. and cooled in the atmospher, then provided for following evaluation.
[0052] The forsterite was formed by applying the annealing separator (composition: 95% by mass of MgO and 5% by mass of TiO2) with water slurry, drying it, and then performing the finishing annealing (after temperature up under atmosphere of 75% by volume of H2—N2in condition of 10° C./hr from800 to 1100° C., soaking at 1200° C. for 10 hr wherein the atmosphere at 1100° C. or more being 100% of H2) . In addition, the phosphate-based coating coated on the forsterite layer in the grain-oriented magnetic steel sheet was formed by coating a solution (a water-based solution for magnesium phosphate, chromic acid, silica, and the like) with the roll-coater and baking it at 800° C. Further, a monolayer under coating in the non-oriented magnetic steel sheet and the like was formed by coating a based solution for aluminum phosphate, chromic acid, acid, and the like with the roll-coater and baking it 300° C.
[0053] The chromium content contained in the top layer coating of the invention was 0.0% by weight or less.
[0054] Evaluation of Punching Quality
[0055] Continuous punching was done with a 15-mm-diameter steel die (made of SKD-11) using the punching oil in the clearance setting of 5 to 8% of sheet thickness. Number of punching times until burr height reached 50 μm was counted and evaluated. The burr height was measured at four points per punched material to take a maximum value, and the average value of respective maximum burr heights of three pieces of punched materials was used. The punching rate was set 450 strokes/min.
[0056] Methods for Measuring Kinetic Friction Coefficient
[0057] The kinetic friction coefficient among the treated steel sheets was measured in conformity with ASTM (American Society for Testing and Materials)-D1894.
[0058] The measurement of the kinetic friction coefficient was done using the Peeling/Slipping/Scratching TESTER HEIDON (R) -14 by SINTOKAGAKU KK (kabushiki kaisha) For the test pieces, the upper test piece was a square 30 mm on a side and the lower test piece was a 50×100-mm-rectangle. The kinetic friction coefficient was measured by pressing the upper test piece on the lower test piece under load of 200 g and sliding the upper test piece at a rate of 150 mm/min. Burr was wholly removed from the sheared portion on the measured surface side so that the burr didn't contact other sheet.
[0059] Evaluation of Sliding Performance
[0060] The EI core was stacked with a hand-cranked stacking machine, and the resistance at that time was evaluated according to a following criterion. As the stacking machine, an automatic core stacking machine AK-HEI-41 by AOKIJIDOKI KK was used.
[0061] OO: very light
[0062] O: light
[0063] Δ: moderate
[0064] x: heavy
[0065] Evaluation of Adhesiveness
[0066] An inward bending was practiced (by hand bending) with a round bar 20 mm diameter for the grain-oriented magnetic steel sheet, and a round bar 10 mm diameter for the non-oriented magnetic steel sheet. After that Scoth tape was attached on the surface of the steel sheet coating, then the peeling amount of the coating (including lifted portion) was visually determined when the tape was removed, and evaluated according to a following criterion.
[0067] OO: no peeling (area ratio of the peeled portion: substantially 0% (about 0 to 2%).)
[0068] O: slight peeling (area ratio of the peeled portion: 10% or less.)
[0069] Δ: peeling (area ratio of the peeled portion: more than 10% and 50% or less.)
[0070] x: great peeling (area ratio of the peeled portion: more than 50%)
[0071] Evaluation of the Corrosion Resistance
[0072] The steel sheets were subjected to a constant temperature and humidity test (50° C., 98% relative humidity), the red ruster incidence (incidence area) after two days was observed visually and evaluated according to a following criterion.
[0073] OO: less than 20%
[0074] O: 20% or more and less than 40%
[0075] Δ: 40% or more and less than 60%
[0076] x: 60% or more
[0077] As shown clearly from Table 1, each of the examples of the invention exhibits a large advantage for improvement of the punching quality and sliding performance, and an excellent adhesiveness and corrosion resistance.
1TABLE 1-1
|
|
baking
steelSifluorocarbonfluorocarbonthe rest oftemperaturekinetic frictionpunchabilityslidingcorrosion
sheetcontent %under coatingresin in top layerresin content %top layer(PMT) ° C.coefficient10,000 timesperformanceadhesivenessresistance
|
|
comparativegrain-3.0forsterile (lower) + magnesiumnononono0.55Δ—X
example 1orientedphosphate-based coating
comparativegrain-3.0forsterile (lower) + magnesiumnonoPES4000.47Δ∘∘∘∘
example 2orientedphosphate-based coating
comparativegrain-3.0forsterile (lower) + magnesiumPTFE10PES4000.410Δ∘∘∘∘
example 3orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE20PES4000.320∘∘∘∘∘∘
example 1orientedphosphate-based coating
practicalgrain-3.0forsterile (mower) + magnesiumPTFE30PES4000.240∘∘∘∘∘∘
example 2orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE40PES4000.145∘∘∘∘∘∘
example 3orientedphosphate-based cotaing
practicalgrain-3.0forsterile (lower) + magnesiumPTFE50PES4000.150∘∘∘∘∘∘
example 4orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE60PES4000.150∘∘∘∘∘∘
example 5orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE70PES4000.150∘∘∘∘∘∘
example 6orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE80PES4000.150∘∘∘∘
example 7orientedphosphate-based coating
practicalgrain-3.0forsterile (lower) + magnesiumPTFE90PES4000.150∘∘∘∘
example 8orientedphosphate-based coating
comparativegrain-3.0forsterile (lower) + magnesiumPTFE100no4000.150∘∘XΔ
example 4orientedphosphate-based coating
comparativegrain-3.3forsterile (lower) + magnesiumnononono0.55Δ—X
example 5orientedphosphate-based coating
comparativegrain-3.3forsterile (lower) + magnesiumnonoPES4000.47Δ∘∘∘∘
example 6orientedphosphate-based coating
comparativegrain-3.3forsterile (lower) + magnesiumPTFE10PES4000.410Δ∘∘∘∘
example 7orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE20PES4000.320∘∘∘∘∘
example 9orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE30PES4000.240∘∘∘∘∘∘
example 10orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE40PES4000.145∘∘∘∘∘∘
example 11orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE50PES4000.150∘∘∘∘∘∘
example 12orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE60PES4000.150∘∘∘∘∘∘
example 13orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE70PES4000.150∘∘∘∘∘∘
example 14orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE80PES4000.150∘∘∘∘
example 15orientedphosphate-based coating
practicalgrain-3.3forsterile (lower) + magnesiumPTFE90PES4000.150∘∘∘∘
example 16orientedphosphate-based coating
comparativegrain-3.3forsterile (lower) + magnesiumPTFE100no4000.150∘∘XΔ
example 8orientedphosphate-based coating
|
*PMT: Peak Metal Temperature
[0078]
2
TABLE 1-2
|
|
|
fluorocarbon
baking
|
steel
Si
resin in top
fluorocarbon
the rest of
temperature
kinetic friction
punchability
sliding
corrosion
|
sheet
content %
under coating
layer
resin content %
top layer
(PMT) ° C.
coefficient
10,000 times
performance
adhesiveness
resistance
|
|
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PFA
60
PES
400
0.2
50
∘∘
∘∘
∘∘
|
example 17
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
FEP
60
PES
400
0.3
50
∘
∘∘
∘∘
|
example 18
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
PEEK
400
0.1
50
∘∘
∘∘
∘∘
|
example 19
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
PPS
400
0.1
50
∘∘
∘∘
∘∘
|
example 20
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
PES
260
0.3
30
∘
∘
∘
|
example 21
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
epoxy
260
0.3
30
∘
∘
∘
|
example 22
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
acrylic
260
0.3
30
∘
∘
∘
|
example 23
oriented
phosphate-based coating
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
mag-
400
0.1
40
∘∘
∘
∘
|
example 24
oriented
phosphate-based coating
nesium
|
phosphate
|
practical
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
aluminum
400
0.1
40
∘∘
∘
∘
|
example 25
oriented
phosphate-based coating
phosphate
|
comparative
grain-
3.0
Forsterile (grain) + aluminum
PTFE
30
mag-
300
0.4
10
Δ
x
Δ
|
example 9
oriented
phosphate-based coating
nesium
|
phosphate
|
comparative
grain-
3.0
Forsterile (lower) + aluminum
PTFE
30
alum-
300
0.4
10
Δ
x
Δ
|
example 10
oriented
phosphate-based coating
inum di-
|
chromate
|
comparative
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
mag-
300
0.4
20
Δ
x
X
|
example 11
oriented
phosphate-based coating
nesium di-
|
chromate
|
comparative
grain-
3.0
Forsterile (lower) + aluminum
PTFE
60
alum-
300
0.4
20
Δ
X
X
|
example 12
oriented
phosphate-based coating
inum di-
|
chromate
|
comparative
grain-
3.0
Forsterile (lower) + aluminum
no
no
epoxy
260
0.4
10
Δ
∘∘
∘∘
|
example 13
oriented
phosphate-based coating
|
comparative
grain-
3.0
Forsterile (lower) + aluminum
no
no
acrylic
260
0.4
10
Δ
∘∘
∘∘
|
example 14
oriented
phosphate-based coating
|
comparative
grain-
3.0
no
no
no
no
no
0.6
5
x
—
X
|
example 15
oriented
|
comparative
grain-
3.0
no
no
no
PES
400
0.4
7
Δ
∘∘
∘∘
|
example 16
oriented
|
comparative
grain-
3.0
no
PTFE
10
PES
400
0.4
10
Δ
∘∘
∘∘
|
example 17
oriented
|
practical
grain-
3.0
no
PTFE
20
PES
400
0.3
20
∘
∘∘
∘∘
|
example 26
oriented
|
practical
grain-
3.0
no
PTFE
30
PES
400
0.2
50
∘∘
∘∘
∘∘
|
example 27
oriented
|
practical
grain-
3.0
no
PTFE
40
PES
400
0.1
60
∘∘
∘∘
∘∘
|
example 28
oriented
|
practical
grain-
3.0
no
PTFE
50
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 29
oriented
|
practical
grain-
3.0
no
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 30
oriented
|
practical
grain-
3.0
no
PTFE
70
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 31
oriented
|
practical
grain-
3.0
no
PTFE
80
PES
400
0.1
70
∘∘
∘
∘
|
example 32
oriented
|
practical
grain-
3.0
no
PTFE
90
PES
400
0.1
70
∘∘
∘
∘
|
example 33
oriented
|
comparative
grain-
3.0
no
PTFE
100
no
400
0.1
70
∘∘
X
Δ
|
example 18
oriented
|
|
*PMT: Peak Material Temperature
|
[0079]
3
TABLE 1-3
|
|
|
baking
|
steel
Si
fluorocarbon
fluorocarbon
the rest of
temperature
kinetic friction
punchability
sliding
Corrosion
|
sheet
content %
under coating
resin in top layer
resin content %
top layer
(PMT) ° C.
coefficient
10,000 times
performance
adhesiveness
resistance
|
|
|
comparative
grain-
3.3
no
no
no
no
no
0.6
5
x
—
X
|
example 19
oriented
|
comparative
grain-
3.3
no
no
no
PES
400
0.4
7
Δ
∘∘
∘∘
|
example 20
oriented
|
comparative
gain-
3.3
no
PTFE
10
PES
400
0.4
10
Δ
∘∘
∘∘
|
example 21
oriented
|
practical
grain-
3.3
no
PTFE
20
PES
400
0.3
20
∘
∘∘
∘∘
|
example 34
oriented
|
practical
grain-
3.3
no
PTFE
30
PES
400
0.2
50
∘∘
∘∘
∘∘
|
example 35
oriented
|
practical
grain-
3.3
no
PTFE
40
PES
400
0.1
60
∘∘
∘∘
∘∘
|
example 36
oriented
|
practical
grain-
3.3
no
PTFE
50
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 37
oriented
|
practical
grain-
3.3
no
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 38
oriented
|
practical
grain-
3.3
no
PTFE
70
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 39
oriented
|
practical
grain-
3.3
no
PTFE
80
PES
400
0.1
70
∘∘
∘
∘
|
example 40
oriented
|
practical
grain-
3.3
no
PTFE
90
PES
400
0.1
70
∘∘
∘
∘
|
example 41
oriented
|
comparative
grain-
3.3
no
PTFE
100
no
400
0.1
70
∘∘
x
Δ
|
example 22
oriented
|
practical
grain-
3.0
aluminum
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 42
oriented
phosphate-based
|
coating (1 μm)
|
practical
grain-
3.0
magnesium
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 43
oriented
dichromate-based
|
coating (0.3 μm)
|
practical
grain-
3.3
aluminum
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 44
oriented
phosphate-based
|
coating (1 μm)
|
practical
grain-
3.3
magnesium
PTFE
60
PES
400
0.1
70
∘∘
∘∘
∘∘
|
example 45
oriented
dichromate-based
|
coating (0.3 μm)
|
comparative
non-
3.0
no
no
no
no
no
0.6
10
x
—
X
|
example 23
oriented
|
comparative
non-
3.0
no
no
no
PES
400
0.4
20
Δ
∘∘
∘∘
|
example 24
oriented
|
comparative
non-
3.0
no
PTFE
10
PES
400
0.4
30
Δ
∘∘
∘∘
|
example 25
oriented
|
practical
non-
3.0
no
PTFE
20
PES
400
0.3
60
∘
∘∘
∘∘
|
example 46
oriented
|
practical
non-
3.0
no
PTFE
30
PES
400
0.2
80
∘∘
∘∘
∘∘
|
example 47
oriented
|
practical
non-
3.0
no
PTFE
40
PES
400
0.1
90
∘∘
∘∘
∘∘
|
example 48
oriented
|
practical
non-
3.0
no
PTFE
60
PES
400
0.1
100
∘∘
∘∘
∘∘
|
example 49
oriented
|
practical
non-
3.0
no
PTFE
80
PES
400
0.1
100
∘∘
∘
∘
|
example 50
oriented
|
Practical
non-
3.0
no
PTFE
90
PES
400
0.1
100
∘∘
∘
∘
|
example 51
oriented
|
comparative
non-
3.0
no
PTFE
100
no
400
0.1
100
∘∘
x
Δ
|
example 26
oriented
|
|
*PMT: Peak Metal Temperature
|
[0080]
4
TABLE 1-4
|
|
|
baking
|
temperature
|
steel
Si
fluorocarbon
fluorocarbon
the rest of
(PMT)*
kinetic friction
punchability
siding
corrosion
|
sheet
content %
under coating
resin in top layer
resin content %
top layer
*° C.
coefficient
10,000 times
performance
adhesiveness
resistance
|
|
|
comparative
non-
0.25
no
no
no
PES
400
0.4
300
Δ
∘∘
∘∘
|
example 27
oriented
|
comparative
non-
0.25
no
PTFE
10
PES
400
0.4
330
Δ
∘∘
∘∘
|
example 28
oriented
|
practical
non-
0.25
no
PTFE
20
PES
400
0.3
350
∘
∘∘
∘∘
|
example 52
oriented
|
practical
non-
0.25
no
PTFE
30
PES
400
0.2
400
∘∘
∘∘
∘∘
|
example 53
oriented
|
practical
non-
0.25
no
PTFE
40
PES
450
0.1
400
∘∘
∘∘
∘∘
|
example 54
oriented
|
practical
non-
0.25
no
PTFE
60
PES
400
0.1
500
∘∘
∘∘
∘∘
|
example 55
oriented
|
practical
non-
0.25
no
PTFE
80
PES
400
0.1
500
∘∘
∘
∘
|
example 56
oriented
|
practical
non-
0.25
no
PTFE
90
PES
400
0.1
500
∘∘
∘
∘
|
example 57
oriented
|
comparative
non-
0.25
no
PTFE
100
no
400
0.1
500
∘∘
x
Δ
|
example 29
oriented
|
practical
non-
3.0
no
PTFE
60
PEEK
400
0.1
100
∘∘
∘∘
∘∘
|
example 58
oriented
|
practical
non-
3.0
no
PTFE
60
PPS
400
0.1
100 ∘∘
∘∘
∘∘
|
example 59
oriented
|
practical
non-
3.0
no
PTFE
60
PES
400
0.1
100
∘∘
∘∘
∘∘
|
example 60
oriented
|
practical
non-
3.0
no
PTFE
60
epoxy
260
0.3
80
∘
∘
∘
|
example 61
oriented
|
practical
non-
3.0
no
PTFE 60
acrylic
260
0.3
80
∘
∘
∘
|
example 62
oriented
|
practical
non-
3.0
no
PTFE
60
mag-
400
0.1
40
∘∘
∘
∘
|
example 63
oriented
nesium
|
phosphate
|
practical
non-
3.0
no
PTFE
60
aluminum
400
0.1
40
∘∘
∘
∘
|
example 64
oriented
phosphate
|
practical
non-
3.0
aluminum
PTFE
60
PES
400
0.1
100
∘∘
∘∘
∘∘
|
example 65
oriented
phosphate-based
|
coating (1 μm)
|
practical
non-
3.0
magnesium
PTFE
60
PES
400
0.1
100
∘∘
∘∘
∘∘
|
example 66
oriented
dichromate-based
|
coating (0.3 μm)
|
comparative
non-
3.0
no
PTFE
30
mag-
400
0.4
30
Δ
x
Δ
|
example 30
oriented
nesium di-
|
chromate
|
comparative
non-
3.0
no
PTFE
30
aluminum
400
0.4
30
Δ
x
Δ
|
example 31
oriented
dichro-
|
mate
|
comparative
non-
3.0
no
PTFE
60
mag-
400
0.4
50
Δ
x
Δ
|
example 32
oriented
nesium di-
|
chromate
|
comparative
non-
3.0
no
PTFE
60
aluminum
400
0.4
50
Δ
x
Δ
|
example 33
oriented
dichro-
|
mate
|
comparative
non-
3.0
no
no
no
epoxy
260
0.4
30
Δ
∘∘
∘∘
|
example 34
oriented
|
comparative
non-
3.0
no
no
no
acrylic
260
0.4
30
Δ
∘∘
∘∘
|
example 35
oriented
|
comparative
non-
3.0
no
no
no
mag-
no
0.4
10
∘∘
∘
Δ
|
example 36
oriented
nesium
|
phosphate
|
dull
|
practical
grain-
3.0
forsterile
PTFE
40
PES
400
0.1
45
∘∘
∘∘
∘∘
|
example 67
oriented
|
practical
grain-
3.0
forsterile
PTFE
60
PES
400
0.1
50
∘∘
∘∘
∘∘
|
example 68
oriented
|
practical
grain-
3.0
forsterile
PTFE
80
PES
400
0.1
50
∘∘
∘∘
∘∘
|
example 69
oriented
|
|
*non-oriented dull: Ra = 1.5 μm
|
PMT: Peak Metal Temperature
|
[0081] Industrial Applicability
[0082] According to the invention, a magnetic steel sheet with a insulating coating having a high punching quality and sliding performance as well as an excellent adhesiveness can be achieved in either of magnetic steel sheets having a high hardness or magnetic steel sheets having a low hardness.
Claims
- 1. A magnetic steel sheet having a insulating coating characterized by having a chromium-free coating as its top layer, the top layer coating containing 20 parts by mass or more and 90 parts by mass or less of fluorocarbon resin.
- 2. The magnetic steel sheet having the insulating coating according to claim 1, characterized in that kinetic friction coefficient of a surface of the insulating coating is 0.3 or less.
- 3. The magnetic steel sheet having the insulating coating according to claim 1, characterized in that the fluorocarbon resin is at least one selected from the group consisting of a polytetrafluoroethylene (PTFE), a tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), and a tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
- 4. The magnetic steel sheet having the insulating coating according to claim 1, wherein other components than the fluorocarbon resin in the top layer coating are one or two of organic resin and inorganic compounds.
- 5. The magnetic steel sheet having the insulating coating according to claim 4, wherein the organic resin is one or two or more selected from an epoxy resin, an acrylic resin, a vinylacetate resin, a phenolic resin, a polyethersulfone resin (PES), a polyphenylenesulfide resin (PPS), a polysulfone resin, a polyallylsulfone resin, a polyetherkethone resin (PEEK), a polyetherimide resin, and a polyamideimide resin.
- 6. The magnetic steel sheet having the insulating coating according to claim 4, wherein the inorganic compounds are one or two or more selected from phosphates, inorganic oxides of elements of group 3 or group 4 in the periodic table, and metal compounds of the elements of the group 3 in the periodic table.
- 7. The magnetic steel sheet having the insulating coating according to claim 1, wherein the fluorocarbon resin is polytetrafluoroethylene (PTFE) and the rest of the top layer coating is one or two selected from a polyethersulfone resin (PES) and a polyphenylenesulfide resin (PPS).
- 8. An insulating coating, the coating being a chromium-free coating suitable for the top layer of the insulating coating of the magnetic steel sheet, characterized by containing 20 parts by mass or more and 90 parts by mass or less of the fluorocarbon resin.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-113575 |
Apr 2001 |
JP |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/JP02/03571 |
4/10/2002 |
WO |
|