This invention relates generally to electrical connectors and, more particularly, to electrical terminals for electrical connectors.
Electrical terminals are well known for connecting various types of electrical elements to one another. Electrical terminals include socket terminals and plug terminals for insertion into the socket terminals. A typical plug terminal includes an elongated plug contact, and a typical socket terminal includes a socket housing defining a cavity for sliding receipt of the plug contact. The typical socket housing includes rigid sidewalls and oppositely disposed resilient socket contacts biased toward one another. The plug contact is disposed between the sidewalls and is releasably secured in electrical contact between the socket contacts to form a readily separable electrical joint. While such terminals are suitable for many applications, the plug contact laterally moves between and vibrates against the socket housing sidewalls. Vibration leads to localized fretting of the terminals, which leads to plating wear and, eventually, oxidation and concomitant failure of the terminals. To reduce vibration, the plug contact is interference fit between the rigid sidewalls of the socket housing. But this tight configuration results in unacceptably high terminal-to-terminal engagement and disengagement forces.
An electrical socket terminal includes a socket housing defining a cavity. The socket housing includes a first set of walls, a second set of rigid walls connected to the first set of walls and spacing the first set of walls apart. The socket housing also includes at least one resilient socket contact inwardly depending into the cavity from at least one of the first set of walls and including at least one inwardly depending stabilizer adapted to laterally restrain a plug contact.
Referring now to the drawings,
The socket terminal 12 can be any suitable conductive terminal for receiving a complementary plug terminal. For example, the socket terminal 12 can include a set of sheath clamps 20 at the rear end for clamping a wire insulation jacket (not shown), and a set of wire clamps 22 forward of the sheath clamps 20 for clamping wire strands (not shown). In any case, the socket terminal 12 includes a socket housing 24 disposed forward of the clamps 20, 22.
The socket housing 24 receives the plug contact 18 therein for electrical contact therewith. The socket housing 24 has a plurality of walls including a first set of walls 26 and a second set of walls 28, with oppositely disposed recesses 30 therein for cooperating with a socket connector body (not shown) adapted to carry the socket terminal 12. In general, the walls 26, 28 are rigid and the second set of walls 28 spaces the first set of walls 26 apart. The socket housing 24 also includes one or more resilient socket contacts 32, 34 integrally connected to the first set of walls 26 at bent ends 36. As used herein, the term resilient includes a general ability of a member to recover its free state after being displaced or deformed in a vertical, lateral, and/or torsional direction.
As shown in
This is because, as best shown in
Referring also to
As best shown in
Referring to
Because of the interference fit, the contacts 32, 34, by way of the stabilizers 60, 62, tend to impose opposite lateral forces against the plug contact 18 to firmly hold the plug contact 18 laterally between the stabilizers 60, 62. But because the contacts 32, 34 are resilient, such forces are not excessive so that the plug contact 18 can be inserted into and removed from the socket housing 24 with reasonable engagement force effort. The stabilizers 60, 62 are preferably beveled at forward ends thereof to include lead-in chamfers 80, 82 to facilitate assembly of the plug contact 18 between the stabilizers 60, 62. And, of course, the socket contacts 32, 34 generally tend to impose normal forces against the plug contact 18 to firmly hold the plug contact 18 between the straight portions 44, 48 of the socket contacts 32, 34.
The main lateral resiliency offered by the terminal 12 predominantly comes from the lateral resiliency of the socket contact members 32, 48. The socket contacts 32, 34 tend to provide equal and opposite stabilized loading in the vertical or normal direction, the lateral direction, and/or a torsional direction. Because of this combined resilient loading effect, the plug contact 18 is very stably held within the terminal 12 between the contacts 32, 34 so as to reduce terminal-to-terminal vibration.
The socket terminal 12 can be manufactured in any suitable manner. For example, the terminal 12 can be manufactured according to any suitable progressive die stamping and bending processes, which are well known to those skilled in the art. Accordingly, a blank of material can be die stamped, and then bent into the final configuration illustrated in
Although it is preferred to use at least two laterally opposed stabilizers on at least two normally opposed resilient socket contacts, other embodiments are contemplated. For example, just one resilient socket contact could include just one or more stabilizers to laterally restrain a plug contact. In this case, a plug contact could be resiliently restrained between a rigid wall of a socket housing and the one or more stabilizers depending from the socket contact so as to reduce vibration of the plug contact within the socket housing. In another example, multiple laterally opposed stabilizers could be carried by just one resilient socket contact, such that a plug contact is held between stabilizers of a single contact. Of course, the size, shape, and configuration of the housing and the plug contact would vary from that shown in
The present invention thus provides a simple and inexpensive means to resiliently restrain a plug contact within a socket terminal between socket contacts. The socket contacts resiliently deflect in normal and lateral directions to allow for plug terminal contact alignment and tolerance variations. The plug contact is restrained therein with acceptable terminal-to-terminal engagement and disengagement forces, and against lateral movement to avoid vibration between plug and socket terminals. Accordingly, the present invention socket terminal will incur relatively less localized fretting, plating wear, oxidation, and concomitant failure thereof.
It will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those described above, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptions, variations, modifications and equivalent arrangements, the present invention being limited only by the following claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3713080 | Kennedy | Jan 1973 | A |
4717356 | Rahrig et al. | Jan 1988 | A |
5281175 | Chupak et al. | Jan 1994 | A |
5399110 | Morello et al. | Mar 1995 | A |
6200174 | Katoh et al. | Mar 2001 | B1 |
6494751 | Morello et al. | Dec 2002 | B1 |
6676456 | Horng | Jan 2004 | B1 |
7048584 | Morello et al. | May 2006 | B1 |
20020068479 | Morello et al. | Jun 2002 | A1 |
20030109181 | Bungo | Jun 2003 | A1 |
20050287878 | Urbaniak et al. | Dec 2005 | A1 |
20060292937 | Morello et al. | Dec 2006 | A1 |