Standard electrical components are typically provided with leads with which they can be electrically connected in a circuit. The leads may be soldered or crimped to wires or traces to install the component in a circuit. As circuits are made smaller, space for installation of components is limited. This may require separate mounting components or additional manufacturing operations to manipulate the leads for connection in a crowded circuit. To shrink the amount of space required for installing a component, a component's leads may be customized for a particular circuit. Another space-saving technique is to use crimped connections instead of soldered connections. Of course, customized leads and crimp connectors multiply part numbers and increase component cost.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate various systems, methods, and other embodiments of the disclosure. It will be appreciated that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of another element may be implemented as an external component and vice versa. Furthermore, elements may not be drawn to scale.
The leaded component socket and assembly methods described herein provide a low cost way to assemble, mount, and electrically connect an electrical component in a device. By way of example, a leaded LED used for lighting in a rocker switch is connected by its leads to terminals or other electrical components in the switch. Using state-of-the-art techniques, if the LED has a standard configuration with straight leads, the leads are manually formed and positioned during assembly. In some instances, the LED is purchased with preformed leads specifically designed to contact the terminals when the LED is installed. Often a separate component is used to retain the LED and its leads in the correct position within the device.
The leaded component socket described herein includes lead guides that contact and urge standard configuration leads on an electrical component (e.g., an LED) into the correct position within a device when the component is pressed into the socket. This eliminates the need for specially shaped leads. In some embodiments, the leaded device socket also includes a receiver for retaining the LED in the correct position in the device. Thus, a separate retaining component may not be necessary. The receiver may also include integral features for supporting an o-ring used to seal around the leaded electrical component. In some embodiments, the lead guides and receiver are integrally molded with the socket.
The socket assembly 30 is housed within the switch body 15. The switch body 15 includes features that allow the rocker switch 10 to be mounted in a vehicle trim panel. The switch frame 15 also includes a face portion 17 that supports the rocker 12 and includes two LED locator features 16. The LED locator features 16 are sized to closely surround the LED 40 and also to squeeze an o-ring 45 between an underside of each locator feature 16 and an o-ring rim 31 on the socket assembly. This helps keep moisture out of the socket assembly 30, where it may corrode electrical connections. In some embodiments, the o-ring may not be used, however, the same socket assembly 30 can be used in either case.
The lead guide 120 includes a channel 125 that defines a curvilinear path between the receiver 115 and a connection point 130. The connection point 130 defines generally where an end of an LED lead 163a will be positioned when the LED is installed in the socket 110. The socket base 100 includes a crimp terminal mounting slot 135 into which a lamp terminal 28 is pressed. The lamp terminal 28 includes a blade portion 282 sized to pass through the mounting slot 135 and a tapered end 286 to facilitate insertion. The lamp terminal 28 is retained within the mounting slot 135 with barbs 287 that provide frictional engagement with the slot. A crimp connector 284 is located at a head of the lamp terminal. When the lamp terminal 28 is installed in the socket base 100, the crimp connector is positioned at the connection point 130. As can be seen from
Ends 163a of the leads 163 have been inserted in the receiver 115. The slots 111 lead to a channel 125 that serves as the lead guide 120. The channel 125 is sized to loosely enclose the lead 163 and defines a curvilinear, downward sloping deformation path for the lead. The deformation path can be considered to be “obtuse”, because it curves gently, without acute angles. This gentle curving facilitates sliding of the lead 163 within the channel 125 and tends to prevent the end 163a from lodging in the channel 125 during insertion. Downward motion of the LED 40 causes the lead 163 to contact the channel and deform to fit the channel 125.
While two channels 125 are shown per socket 110, any number of channels 125 can be used to correspond to the number of leads on an electrical component. Modifications to the configuration of the channel 125 may be made to define a deformation path that suits a particular device configuration.
References to “one embodiment”, “an embodiment”, “one example”, “an example”, and so on, indicate that the embodiment(s) or example(s) so described may include a particular feature, structure, characteristic, property, element, or limitation, but that not every embodiment or example necessarily includes that particular feature, structure, characteristic, property, element or limitation. Furthermore, repeated use of the phrase “in one embodiment” does not necessarily refer, to the same embodiment, though it may.
While example systems, methods, and so on have been illustrated by describing examples, and while the examples have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the systems, methods, and so on described herein. Therefore, the disclosure is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Thus, this application is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims.
To the extent that the term “includes” or “including” is employed in the detailed description or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim.
Number | Name | Date | Kind |
---|---|---|---|
4303297 | Smart et al. | Dec 1981 | A |
4631377 | Imazeki et al. | Dec 1986 | A |
4702706 | Sadigh-Behzadi | Oct 1987 | A |
4911662 | Debortoli et al. | Mar 1990 | A |
5053591 | Theurer | Oct 1991 | A |
5417400 | Arakawa | May 1995 | A |
5605395 | Peng | Feb 1997 | A |
6238251 | Curtis et al. | May 2001 | B1 |
6270355 | Kihara | Aug 2001 | B1 |
6409530 | Zhao et al. | Jun 2002 | B1 |
7105762 | Lee | Sep 2006 | B1 |
7201081 | Mossler | Apr 2007 | B2 |
7731396 | Fay et al. | Jun 2010 | B2 |
20090080195 | Huang | Mar 2009 | A1 |
20100067242 | Fung | Mar 2010 | A1 |
20100258418 | Yu | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2 838 811 | Oct 2003 | FR |
Number | Date | Country | |
---|---|---|---|
20120302087 A1 | Nov 2012 | US |