The present invention relates to an electrical switch that incorporates an internal rotor for switching.
Electrical switches of the kind concerned are often known as rotary stepping switches. In a typical construction, the switch has a casing, a rotor, a moving contact mounted on the rotor, and a plurality of fixed contacts disposed around the rotor for contact by the moving contact for switching as the rotor is rotated in a stepwise manner by pulling a chain or the like.
There are a number of problems associated with such switches. The arrangement of fixed contacts around the rotor imposes limitations on the design of the switches and in particular makes it hard to alter the number of the fixed contacts vis-à-vis the design of the casing or to install more than four to five fixed contacts. By being connected to the switch in different directions around the latter's periphery, electrical cables are cumbersome to be arranged or run in a confined space.
The invention seeks to mitigate or at least alleviate the aforesaid problems or shortcomings by providing an improved or otherwise new electrical switch.
According to the invention, there is provided an electrical switch comprising a casing, a plurality of fixed contacts and at least one moving contact provided in the casing, and a rotor supported in the casing for rotational advancement about an axis of rotation to move the moving contact into or out of contact with at least one of the fixed contacts, thereby performing a switching action. There is also an operating mechanism for rotationally advancing the rotor. The fixed contacts are arranged on one side of the rotor with respect to the axis of rotation.
Preferably, the fixed contacts are arranged in one row extending in a first direction substantially parallel to the axis of rotation.
More preferably, the fixed contacts are aligned with one another in the first direction.
More preferably, the fixed contacts are located at regular intervals in the first direction.
It is preferred that at least one of the fixed contacts is elongate and extends transversely to the axis of rotation.
It is further preferred that said at least one fixed contact has opposite first and second ends and is supported at the first end for pivotal movement at the second end by the rotor.
Advantageously, the fixed contacts have substantially the same construction and are arranged in a regular manner. It is preferred that the moving contact extends across all of the fixed contacts for performing switching actions with the fixed contacts at different times and/or in different combinations.
In a preferred embodiment, the moving contact is carried by and movable with the rotor.
More preferably, the rotor has a cavity in which the moving contact is located, the cavity having at least one open region through which the moving contact is exposed and contactable by an associated fixed contact.
Further more preferably, the cavity includes at least one closed region for covering and blocking the moving contact from being contacted by the associated fixed contact.
Yet further more preferably, the open region and the closed region associated with the same fixed contact together extend circumferentially with respect to the rotor.
Yet further more preferably, the open region and the closed region associated with each of the fixed contacts together extend circumferentially with respect to a corresponding section of the rotor, and all such sections are arranged in a row along the axis of rotation of the rotor, with the open regions offset as between adjacent sections.
Yet yet further more preferably, the rotor includes an annular flange extending between and separating adjacent open and/or closed regions.
Preferably, the rotor includes at least one inclined protrusion for abutment by an associated fixed contact against rotational reversal upon release of the operating mechanism.
Preferably, the rotor includes at least one inclined protrusion for abutment by an associated fixed contact against rotational reversal upon release of the operating mechanism, which inclined protrusion extends in the direction of the axis of rotation and on and along an edge of the closed region.
It is preferred that the cavity has an open end relative to the axis of rotation, through which open end the moving contact is inserted into the cavity, whereby the moving contact is located in the cavity for rotation with the rotor about the axis of rotation.
It is preferred that the moving contact has a part-cylindrical body and is fixed to the rotor in a co-axially manner.
It is further preferred that the part-cylindrical body has a cross-section that extends about the rotor over an angle exceeding 180°, and preferably about 270°.
In a preferred embodiment, the operating mechanism includes ratchet means in ratchet engagement with a rotor part of the rotor, a manually-operable member for operating the ratchet means in a driving direction to advance the rotor, and first resilient means resiliently biasing the ratchet means to return in a non-driving direction opposite to the driving direction.
More preferably, the ratchet means is supported for linear motion in opposite directions transversely of the axis of rotation.
More preferably, the ratchet means comprises a ratchet member arranged to engage the rotor part in the driving direction upon operation by the manually-operable member and to skip the rotor part in the non-driving direction under the action of the first resilient means.
Further more preferably, the ratchet member is pivotable against the action of a second resilient means to skip the rotor part in the non-driving direction.
Yet further more preferably, the ratchet member includes a rigid support for rigidity while engaging the rotor part in the driving direction.
In a specific construction, the rotor part comprises an annular arrangement of protrusions on the rotor around the axis of rotation.
More specifically, the rotor part is provided at one end of the rotor.
It is preferred that the manually-operable member comprises an elongate pliable member connected with the ratchet means.
It is further preferred that the elongate pliable member is releasably connected with the ratchet means at a junction.
It is yet further preferred that the casing has a part which is openable to reveal the junction for connecting or disconnecting the elongate pliable member.
In a preferred arrangement, the casing has on opposite first and second sides thereof a plurality of openings, with one of the openings on the first side through which the manually-operable member is exposed for manipulation by a user and the other openings on the second side through which electrical cables may be inserted for connection to the fixed contacts respectively.
In a preferred embodiment, the casing has a first compartment holding the fixed contacts and the moving contact and a second compartment holding the operating mechanism.
More preferably, the first compartment is partitioned into separate rooms interconnected by a common area, with each room holding a respective fixed contact and the common area holding the rotor.
Further more preferably, the rooms are oblong in shape and extend in a co-parallel manner.
Further more preferably, the rooms have the same shape and size and are aligned with one another.
In a specific construction, the casing has a first casing part including the first compartment and the second compartment, and a second casing part that closes upon the first casing part, together forming the casing.
More specifically, the second casing part has an integrally-connected tube through which the manually-operable member extends out of the casing for manipulation by a user, the tube being externally screw-threaded and co-operable with an internally screw-threaded nut for mounting the overall electrical switch to a part or housing of an electrical appliance for controlling its operation.
The invention will now be more particularly described, by way of example only, with reference to the accompanying drawings, in which:
Referring initially to
The fixed contacts 400 are arranged on one, and one single, side (e.g. the lower side in
At least one, e.g. each, of the fixed contacts 400 is elongate and extends transversely to the axis of rotation X. Each fixed contact 400 has opposite first and second ends 401 and 402 and is supported at the first end 401 for pivotal movement at the second end 402, resembling a lever, by the rotor 300. The fixed contacts 400 have substantially the same construction and are arranged in a regular manner, e.g. at regular intervals and mutually aligned end-to-end.
In operation, the fixed contacts 400 bear with their second ends 402 upon the rotor 300 and/or the moving contact 500 supported by the rotor 300.
The rotor 300 has a generally cylindrical body 309 with opposite first and second ends 310 and 320 and a central axis coincident with the axis of rotation X. The rotor body 309 is formed with a part-cylindrical cavity 330 sharing the same central axis with the rotor body 309, or co-axial about the central axis. The cavity 330 is formed at a small depth underneath the outer surface of the rotor body 309, has an open end 331 at the rotor's second end 320 relative to the central axis, and extends about the central axis over an angle of about 270°.
The moving contact 500 is carried by, and located on, the rotor 300 for movement i.e. rotation with the rotor 300. The moving contact 500 has a part-cylindrical body 509 which has a cross-section that extends about the rotor 300 over an angle of about 270° for circuit connection, or generally an angle exceeding 180° in a different embodiment. The moving contact 500 is inserted into the cavity 330 of the rotor body 309 along the axial direction, via the cavity's open end 331, as is shown in
The rotor body 309 is integrally formed with a series of three annular flanges 306 at regular intervals along the central axis, thereby dividing the rotor body 309 into a row of four sections 301, 302, 303 and 304. The cylindrical surface of each section is divided into four equal regions A, B, C and D. While being looked at in a schematic developed view, the entire cylindrical surface of the rotor body 309 is divided into sixteen (16) regions 305 that are arranged in a 4×4 array (
As shown in
The four sections A-D are arranged in a row along the rotor's axis of rotation X, with the open regions 305a offset as between adjacent sections. Each flange 306 extends between and separates the open and/or closed regions 305b between adjacent sections.
The four fixed contacts 400 are arranged to extend parallel and side by side together, on one side of and in alignment with respective sections A-D of the rotor 300, with their free ends 402 resiliently biased upon the respective sections A-D. In each of the sections A-D, there are at least one open region 305a exposing the moving contact 500 and at least one closed region 305b covering the moving contact 500, which together extend circumferentially around the rotor 300 for contact making or breaking, i.e. switching action, with the same associated fixed contact 400. The moving contact 500 extends across all of the fixed contacts 400 for performing switching actions with them at different times and/or in different combinations, dependent upon how the open and closed regions 305a and 305b are arranged in each section for the corresponding fixed contact 400.
The rotor 300 includes at least one inclined protrusion or tooth 340 for abutment by an associated fixed contact 400 against rotational reversal upon release of the operating mechanism 600. The inclined tooth 340 has a cross-section of an inclined triangular shape rising from the surface of the rotor 300, and extends laterally in the direction of the axis of rotation X. More specifically, the inclined tooth 340 extends on and along an edge of a closed region 305b. The inclined tooth 340 is inclined or skewed in a direction opposite to the direction of rotation Z of the rotor 300, for counteracting its rotation.
In general, each section of the rotor 300 is formed with at least one such inclined tooth 340 for co-operation with the aligned fixed contact 400. In the described embodiment, there is generally one inclined tooth 340 on each closed region 305b, so the 2nd to 3rd rotor sections 302-304 each have three inclined teeth 340. However, the remaining 1st rotor section 301 has two inclined teeth 340, one along each opposite edge of the only closed region 305b.
Referring to the casing 200, it has a first, main casing part 210 and a second, minor casing part 220 that closes upon and is snap-fitted with the major casing part 210, together forming the casing 200. The main casing part 210 is partitioned into a large, first compartment 211 holding the fixed contacts 400 and the moving contact 500, and a slim, second compartment 212 holding the operating mechanism 600. The two compartments 211 and 212 are positioned right next to each other.
The minor casing part 220 includes an integrally-connected tube 221 through which the pull chain 90 (i.e. manually-operable member 620) extends out of the casing 200 for manipulation by a user. The tube 221 is externally screw-threaded and is co-operable with an internally screw-threaded nut (not shown) for mounting the overall electrical switch 100 to a part or housing of an electrical appliance for controlling its operation.
The casing 200 has, on opposite first and second sides thereof, a plurality of, e.g. five, openings (holes) 201 and 204. One of the openings, i.e. opening 201, is on the first side that corresponds to the minor casing part 220, through which the manually-operable member 620 is exposed for manipulation by a user. The other four openings 204 are on the second side that corresponds to the main casing part 210, through which electrical cables (not shown) may be inserted for connection to the fixed contacts 400 respectively.
Inside the main casing part 210, the first compartment 211 is partitioned into four separate rooms 214 interconnected by a common area 215. The rooms 214 are made to be oblong and narrow in shape and to extend in a co-parallel arrangement, and also parallel to the second compartment 212 right next door. The rooms 214 have generally the same shape and size and are aligned with one another. Each room 214 holds a respective fixed contact 400, which extends parallel to the room 214 and is inserted therein from inside.
The common area 215 extends transversely across inner open ends of the rooms 214, and is much larger and accommodates the rotor 300 with the moving contact 500. The common area 215 intercepts at right angles with the second compartment 212, with the first end 310 of the rotor 300 therein situated inside the second compartment 212.
Turning now to the operating mechanism 600, it includes ratchet means 610 in ratchet engagement with a rotor part 311 of the rotor 300, and a manually-operable member 620 for operating the ratchet means 610 in a driving direction Z to rotate the rotor 300. The rotor part 311 comprises an annular arrangement of four radial protrusions or spikes 311 on the first end 310 of the rotor 300 around the axis of rotation X. Adjacent spikes 311 subtend an angle of 90°.
The operating mechanism 600 also includes first resilient means in the form of, for example, a compression coil spring 630 which resiliently biases the ratchet means 610 to return in a non-driving direction Z′ opposite to the driving direction Z. The manually-operable member 620 is the aforesaid pull chain 90, which has an inner end connected with the ratchet means 610 for pulling the same against the action of the spring 630.
The ratchet means 610 is implemented by a ratchet member in the form of a resilient hook-like pawl 611 that sits in a block 612 which in turn is supported for linear sliding motion in the second compartment 212 of the main casing part 210. The pawl 611 bends to point at an angle of about 45° forward and upward. The pawl 611 is pivotable or bendable downwards against the action of its own resilience (i.e. second resilient means of the operating mechanism 600) but is blocked against pivoting upwards by a pair of hook-shaped prongs 613 covering its back. The pawl 611 and prongs 613 are integral parts of the block 612.
The block 612 with pawl 611 is slidable in opposite directions along the longitudinal extent of the second compartment 212, transversely of the rotor 300 or its axis of rotation X. The block 612 with pawl 611 is resiliently biased by the spring 630 to normally stay innermost of the second compartment 212, at which position of the pawl 611 an adjacent spike 311 is situated in front of the tip of the pawl 611, in the path the tip (
Upon pulling of the pull chain 620, the block 612 is pulled to slide forward in the driving direction Z, with the pawl 611 following suit which abuts and pushes the spike 311 (
The ratchet member 610 includes the hook-shaped prongs 613 covering the back of the pawl 611 as a rigid support for rigidity of the pawl 611 while the pawl 611 is acting upon the rotor spike 311 in the driving direction Z.
Upon release of the pull chain 620, the spring 620 pushes the block 612 to slide backward in the non-driving direction Z′, with the pawl 611 following suit which skips past the next spike 311a turned round (
The next spike 311a now replaces the first-mentioned spike 311 for a repeated action by the pawl 611 upon pulling of the pull chain 620 to perform the next switching action.
The stepping switch 100 performs switching actions upon repeated pulling of the pull chain 620 in a cyclic manner through four switching positions as shown in
The fixed contact “0” acts as the pole, so the associated rotor section 301 has only one closed region 305b, which corresponds to the switched-off position. Thus, in
The other three fixed contacts “1”, “2” and “3” act as three throws to which the pole is selectively connectable, so the associated rotor sections 301 to 303 have only one open region 305a, which correspond to the switching position the respective throws are connected to the pole. Thus, throw “1” is connected to pole “0” in
This is a single-pole triple-throw switch design for the stepping switch 100. The switch design is determined by the design and in particular the arrangement of the open and closed regions 305a and 305b on the rotor 300 for exposing the desired regions of the moving contact 500 for contact by the respective fixed contacts 400 at each of the four angular positions (at 90° apart) of the rotor 300.
The pull chain 620 is releasably connected with the block 612 at a junction 614 which is the frontmost end of the block 612. At this junction 614, a ball socket 614a is formed that receives and thus engages the innermost bead of the pull chain 620. The block 612 is fully concealed inside the casing 200, with the junction 614 inside the casing's tube 221 even when the pull chain 620 is being pulled out. To reveal the junction 614 for connecting or disconnecting the pull chain 620, the casing 200 has a wall part right next to the junction 614 made openable (
Reference is now made to
The only major difference lies in the use of only two, rather than four, fixed contacts 400′, with corresponding changes in the design of the rotor 400′, the moving contact 500′ and the casing 200′. The rotor 300′ and the moving contact 300′ are shorter, with the former having only two sections 301′ and 302′. The casing 200′ is also shorter in the direction across the fixed contacts 400′, including only two rooms 214′.
With the exception of the aforesaid components i.e. casing 200′, rotor 300′ and moving contact 500′, all of the other components are identical as in the first electrical switch 100. Accordingly, such components can be shared for use in manufacturing electrical switches of the same type, thereby resulting in substantial saving in production cost and inventory control.
It is noted the design that electrical cables can be connected to the fixed contacts 400 via the openings 204 all on one side of the casing 200, while the pull chain 90/620 is provided on the opposite side, permits placing of the electrical switch 100 in a relatively narrow space in an electrical appliance. This design also allows the electrical cables to extend to the far side or inwardly without the need to turn or bend round the casing 200, thereby simplifying running of the cables.
The invention has been given by way of example only, and various modifications of and/or alterations to the described embodiments may be made by persons skilled in the art without departing from the scope of the invention as specified in the appended claims.