The invention concerns an electrical switch with a contact system arranged within a housing, having fixed contact elements and a switch contact element, an operating device for switching action on the contact system, in which the switch contact element can be brought by elastic deformation of the switch contact element into a rest position and a switching position, the fixed contact elements being galvanically separated from each other in the rest position and the fixed contact elements being electrically connected to each other via the switch contact element in the switching position.
A switch is disclosed in DE 10 2008 049 580.8, which has a contact system arranged within a housing. The contact system consists, among other things, of fixed contact elements, as well as a switch contact element designed as a snap disk. By manual operation of the operating device of the switch, elastic deformation of the snap disk can be produced, so that the fixed contact elements are electrically connected to each other. The snap disk is fastened on the housing by a separate component.
The task of the present invention is to devise an electrical switch configured so that the overall design is simplified and, at the same time, the assembly suitability of the individual components of the electrical switch is improved.
For this purpose, it is proposed according to the invention that the switch contact element have a switching section and a fastening section, the fastening section being spaced from the switching section and the switching section serving for electrical connection of the fixed contact elements and the fastening section guaranteeing reliable fastening of the switch contact element in the housing.
One of the essential advantages of this invention is that the switch contact element has two zones that are separated from each other. The first zone is the switching section and the second zone the fastening section. A certain contacting of the fixed contact elements occurs over the switching section. The fastening section has its main tasks of holding the switch contact element reliably within the housing of the electrical switch. The two mentioned zones are spaced from each other, especially spaced from each by a free space. No separate retaining element, which must fix the switch contact element within the housing, is necessary. An additional component is not necessary, so that much faster and cost-effective production can be attained.
In one possible variant of the invention, the switch contact element can have at least one connection section that connects the switching section to the fastening section. The switch contact element can form a monolithic component with the switching section and/or the fastening section and/or the connection section. In one possible embodiment of the electrical switch, the switch contact element is designed as a material unit with the switching section, the fastening section and the connection section. It is also conceivable that the mentioned sections do form a common component, but comprise different materials. In a preferred embodiment of the electrical switch, the switch contact element is a metal stamping.
The connection section can preferably be geometrically designed, so that during the change between the rest position and the switching position of the switch contact element, an elastic deformation of the fastening section is prevented. In order for reliable fastening of the switch contact element to be guaranteed, it is advantageous that during the change between the rest position and the switching position of the switch contact element, an elastic deformation does not occur on the fastening section, which would disadvantageously be connected with a certain movement or displacement of the switch contact element and might therefore adversely affect functioning of the contact system. The elastic deformation according to the invention, during the action of the operating device on the contact system, is “trapped” and filtered out by the connection section, starting from the switching section, so that the fastening section during the change between the rest position and switching position of the switch contact element remains rigid and unmoving in its position.
The connection section of the switch contact element is preferably designed as a thin connector. In order to take up the elastic deformation of the switching section as reliably as possible, the connection section can be designed elastic.
In one variant of the electrical switch, the fastening section can be connected to the housing in shape-mated and/or press-fit fashion or bonded. In particular, the fastening section is fastened to the housing by a snap-in connection. A clip connection is conceivable, for example, through which the fastening section can be reliably fastened to the housing.
In one conceivable variant, the fastening section can have an opening, in which a protrusion-like base of the housing is accommodated, so that reliable fastening of the switch contact element is attainable. The fastening section can also have at least one retaining element on the opening, in which the retaining element in the installed state of the switch contact element is elastically deformed on the housing and lies against the base.
While the installer fastens the switch contact element on the housing, elastic deformation of the retaining element or elements occurs, so that the geometric size of the opening is enlarged. The base of the housing passes through the opening during the assembly process, in which case the outer wall of the base simultaneously elastically deforms the retaining element or elements. In the fastened state, the retaining element, with its free end, can engage slightly in the material of the base, which is preferably made of plastic. Additional improvement of fastening of the switch contact element on the housing is achieved by this.
The operating device is advantageously operable manually from the outside, especially if a lifter element is provided on the operating device within the housing. The operating device, as well as the lifter element, can be made as a common component.
The switch contact element is advantageously a hard metal plate. The switching section can be designed in this case as an arched element. Through the pressure force of the lifter, the switch contact element arches in the direction of the fixed contact element and reaches the switching position, in which the switch contact element connects the fixed contacts to each other electrically. Electrical contact between the fixed contact elements is produced by this.
A restoring force advantageously acts on the operating device, which always attempts to move the restoring device into its initial position, in which the switch contact element is simultaneously in the rest position. For example, the restoring force can start, among other things or alone, from the switch contact element, which seeks to return abruptly to its pre-arched initial position, which is the rest position, when operating force on the operating device is released. It is also conceivable that the restoring source is generated via a spring element that supports the restoring process of the operating device. In order to protect the switch contact element from powerful overload, the electrical switch can have limitation devices within the housing that restrict the deflection movement of the operating device.
The present invention also pertains to an operating unit of a moving part of a vehicle, especially a trunk lid, in which the operating unit has the electrical switch.
Further advantages, features and details of the invention are apparent from the following description, in which a practical example of the invention is described in detail with reference to the drawings. The features mentioned in the claims and description can be essential to the invention individually or in any combination. In the drawings:
The switching section 21 in the center has a pressure area 26, as well as four foot areas 27a, 27b. The foot areas 27a together contact one of the two fixed contact elements 10. The foot areas 27b of the switching section 21 lie on the plastic housing 2 without contacting the fixed contact elements 10.
Fastening of the switch contact element 20 occurs in the area of the fastening section 22. The fastening section 22 has an opening 24. A base 5 of the housing 2 stands within the opening 24. During assembly of the switch contact element 20, the installer positions the fastening section 22 of the switch contact element 20 on base 5. As is apparent from
The fixed contact elements 10 run parallel to each other in the direction of a connection element 8 lying on the outside of housing 2. The connection element 8 in the present practical example is designed sleeve-like. An electrical connection to the fixed contact elements 10 can be achieved on the connection element 8 via a plug. Two fastening devices 7 are provided on the side of the connection element 8, in order to fasten the switch 1 in its overall structure to a not explicitly shown component or object.
According to
The connection section 23 is designed as a thin connector 23 running from the foot area 27a along a curved path to the fastening section 22. In the present practical example, two connectors 23 are arranged that connect the fastening section 22 to the switching section 21. Via the elastic deformation of the switching section 21 during a state change of the switch contact element 20 between the rest position I and the switching position II, the connection section 23 can also be elastically deformed. The connection section 23, however, prevents elastic deformation from being transferred to the fastening section 22.
The electrical switch 1 can be used not only in an operating unit of a moving part of a vehicle, especially a trunk lid. The area of use of the electrical switch includes numerous areas of use familiar to one skilled in the art, in which an electrical switch can find use.
Number | Date | Country | Kind |
---|---|---|---|
20 2009 013 098 U | Jul 2009 | DE | national |
10 2009 046 704 | Nov 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4343973 | Main | Aug 1982 | A |
4400596 | Fukukura et al. | Aug 1983 | A |
4438304 | Kennedy | Mar 1984 | A |
4739127 | Higuchi | Apr 1988 | A |
5453589 | Mayer | Sep 1995 | A |
6333477 | Koyama | Dec 2001 | B1 |
6423918 | King et al. | Jul 2002 | B1 |
20110278144 | Ulomek | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
101454529 | Jun 2009 | CN |
0356706 | Mar 1990 | DE |
19803560 | Aug 1999 | DE |
19823894 | Jan 2000 | DE |
19834017 | Feb 2000 | DE |
19901799 | Jul 2000 | DE |
20017078 | Mar 2001 | DE |
102005001371 | Jul 2006 | DE |
102005037613 | Feb 2007 | DE |
102006024292 | Nov 2007 | DE |
102009033486 | Apr 2010 | DE |
55-114136 | Jan 1980 | JP |
61-101913 | Jun 1986 | JP |
2002175736 | Jun 2002 | JP |
Entry |
---|
JP OA Patent Application No. 2010-160054 dated Apr. 22, 2014. |
CN OA 2010102302370 dated Feb. 11, 2014. |
CN 2nd Office Action, Applilcation No. 2010102302370 dated Sep. 3, 2014, with English Translation. |
Number | Date | Country | |
---|---|---|---|
20110011709 A1 | Jan 2011 | US |