The present disclosure generally relates to electrical systems, including electrical systems that may, for example, be used in connection with vehicles, such as with vehicle seats, tracks, and/or removable components in a vehicle.
This background description is set forth below for the purpose of providing context only. Therefore, any aspect of this background description, to the extent that it does not otherwise qualify as prior art, is neither expressly nor impliedly admitted as prior art against the instant disclosure.
Some electrical systems may not be configured to determine the orientation of components in the system, such as relative to one or more track assemblies of the system.
There is a desire for solutions/options that minimize or eliminate one or more challenges or shortcomings of electrical systems. The foregoing discussion is intended only to illustrate examples of the present field and is not a disavowal of scope.
In embodiments, an electrical system may include a component configured for selective connection with, movement (e.g., sliding) relative to, and removal from a mounting surface, and/or an orientation sensor configured to determine an orientation (e.g., angle, direction, etc.) of the component relative to said mounting surface.
The foregoing and other potential aspects, features, details, utilities, and/or advantages of examples/embodiments of the present disclosure will be apparent from reading the following description, and from reviewing the accompanying drawings.
While the claims are not limited to a specific illustration, an appreciation of various aspects may be gained through a discussion of various examples. The drawings are not necessarily to scale, and certain features may be exaggerated or hidden to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not exhaustive or otherwise limiting, and are not restricted to the precise form and configuration shown in the drawings or disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:
Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the present disclosure will be described in conjunction with embodiments and/or examples, they do not limit the present disclosure to these embodiments and/or examples. On the contrary, the present disclosure covers alternatives, modifications, and equivalents.
In embodiments, such as generally illustrated in
In embodiments, an electrical system 20 may include a track/rail assembly 30 that may include a first track/rail 32, a second track/rail 34, a third track/rail 36, and/or a fourth track/rail 38 (or more or fewer tracks/rails), which may be extend substantially in parallel with each other (e.g., in an X-direction) and/or may be offset from each other, such as in a lateral direction (e.g., a Y-direction). The track assembly 30 may be substantially fixed to the mounting surface 22. The one or more components 24 may, with some embodiments, be selectively/releasably connected to (e.g., mechanically and/or electrically), move (e.g., slide) along and relative to, and/or be removed from the mounting surface 22 via the track assembly 30, such as without additional or external tools (e.g., may be selectively secured to and removed from the track assembly 30 in a plurality of positions/orientations along the track assembly 30).
With embodiments, a component 24 may, for example and without limitation, include one or more latches/anchors 40 that may be configured to selectively engage and/or contact the track assembly 30 to restrict or prevent movement of a component 24 in one or more directions (e.g., an X-direction and/or a Z-direction of the track assembly 30), and/or one or more electrical contacts 42 that may be configured to selectively contact a conductor 44 of a track assembly 30, such as to provide power from a power source 130 (e.g., a vehicle battery) to the component 24 (see, e.g.,
With embodiments, an electrical system 20 may include a system controller 50 (e.g., an electronic controller) that may be configured to monitor and/or control at least one component 24. The system controller 50 may be connected (e.g., fixed), at least indirectly, to the mounting surface 22 (e.g., with intermediate elements such that relative movement between the system controller 50 and the mounting surface 22 may be substantially prevented), and/or may move with the mounting surface 22 if the mounting surface 22 moves. The system controller 50 may be configured for wired and/or wireless communication. A system controller 50 may, for example, include an electronic processor 50a, a memory 50b, and/or a communication device 50c (e.g., a receiver, a transmitter, a transceiver, etc.) that may be configured for wireless and/or wired communication.
In embodiments, a component 24 may include and/or be connected to a respective component electrical unit 60 (e.g., component electrical units 601, 602, 603). A component electrical unit 60 may include one or more of a variety of configurations. For example and without limitation, a component electrical unit 60 may include and/or be connected to one or more controllers 62, sensors (e.g., sensor 74), receivers, transmitters, antennas, and/or actuators 68 (e.g., electric motors), among other things (see, e.g.,
With embodiments, it may be desirable to determine the orientation of one or more components 24 relative to the mounting surface 22. For example and without limitation, with components 24 that include vehicle seats, it may be desirable to determine the orientation of a vehicle seat to properly deploy safety devices 64 (e.g., airbags, seat belt reminders, etc.). Some systems may determine a position (e.g., X and Y coordinates) of a seat relative to a mounting surface, but may not determine an orientation of the seat. Embodiments of an electrical system 20 may be configured to determine an orientation of a component 24 (e.g. in addition to determining a position of the component 24). The orientation of a component 24 may include, for instance, directed/facing forward, directed/facing rearward, disposed at an angle (e.g., in an X-Y plane) relative to the mounting surface 22, such as an oblique or right angle relative to an X-direction of the mounting surface 22 if the component 24 is not facing forward or rearward. An electrical system 20 may include a position sensor 66 that may obtain/determine a position of a component 24 and an orientation sensor/detection system 70 that may obtain/determine an orientation of the component 24. The position sensor 66 and the orientation sensor 70 may include one or more common elements. A position sensor 66 may include one or more of a variety of configurations. For example and without limitation, a position sensor 66 may include a camera (e.g., one or more of a variety of image and/or video capture devices), transmitters/receivers (e.g., antennas for received signal strength, angle-of arrival, and/or time of flight determinations), and/or a track sensor configured to detect track features corresponding to a position of the component along the track (e.g., formations, text, colors, magnets, etc.), among others.
In embodiments, an orientation sensor 70 may include one or more of a variety of configurations. For example and without limitation, as generally illustrated in
With examples, a system controller 50 and/or a component controller 62 (either or both of which may include, be incorporated with, and/or be connected with the orientation sensor 70) may be configured to receive and/or compare first information (e.g., a magnetic field value, an angle, etc.) from the first magnetometer 80 and second information (e.g., a magnetic field value, an angle, etc.) from the one or more second magnetometers 82, such as via wired communication and/or via wireless communication (e.g., radio frequency (RF) communication). If the second information from a second magnetometer 82 is within a threshold range of the first information from the first magnetometer 80, the system controller 50 and/or a component controller 62 may be configured to determine that the component 24 associated with the second magnetometer 82 is oriented toward the front 22a of the mounting surface 22. For example and without limitation, if the absolute values of orientation angles determined from the first information and the second information are within a threshold range of angles, the system controller 50 and/or a component controller 62 may determine that the component 24 is oriented toward the front 22a of the mounting surface 22. If the second information from a second magnetometer 82 is not within the threshold range, the system controller 50 and/or a component controller 62 may be configured to determine that the component 24 is not oriented toward the front 22a of the mounting surface 22 and/or that the component 24 is oriented toward a rear 22b of the mounting surface 22. Additionally or alternatively, the system controller 50 and/or a component controller 62 may use the first information from the first magnetometer 80 and second information from a second magnetometer 82 to determine an orientation angle of the component 24 relative to the front 22a of the mounting surface 22, such as an angle between forward and rearward. The orientation angle may, in some circumstances, be an oblique or right angle relative to a longitudinal/X-direction of the mounting surface 22.
With examples, in addition to or instead of a magnetometer 80, 82, a first sensor 72 and/or a second sensor 74 may include one or more accelerometers 90, 92. For example and without limitation, the first sensor 72 may include a first accelerometer 90 that may be connected to the system controller 50 and/or substantially fixed relative to the mounting surface 22. Additionally or alternatively, the second sensor 74 of a component 24 may include a second accelerometer 92. Upon movement of the mounting surface 22 (e.g., movement of a vehicle 26), the system controller 50 and/or a component controller 62 may be configured to compare first information and second information (e.g., magnitude, direction, etc.) from the first accelerometer 90 and the second accelerometer 92, respectively. If second information from a second accelerometer 92 is within a threshold of first information from the first accelerometer 90, the system controller 50 and/or a component controller 62 may determine that the component 24 is facing a first direction relative to mounting surface 22 (e.g., toward the front 22a of the mounting surface 22). If the second information from the second accelerometer 92 is not within the threshold, the system controller 50 may determine that the component 24 is facing a second direction (e.g., toward a rear 22b of the mounting surface 22). Additionally or alternatively, the system controller 50 and/or a component controller 62 may determine an orientation angle, which may include an angle between the front 22a of the mounting surface 22 and a current orientation/direction of the component 24. If the first information and the second information include/correspond to similar magnitudes but opposite directions, the system controller 50 and/or a component controller 62 may, for example, determine that the component 24 is facing the second direction.
With examples, in addition to or instead of a magnetometer 80, 82 and/or an accelerometer 90, 92, a first sensor 72 and/or a second sensor 74 of an orientation sensor 70 may include one or more gyroscopes 100, 102. For example and without limitation, a first gyroscope 100 of a first sensor 72 may be connected to the system controller 50 and/or substantially fixed relative to the mounting surface 22. A respective second gyroscope 102 may be connected to and/or incorporated with each component 24 and/or a second sensor 74 thereof. Upon movement of the mounting surface 22 (e.g., movement of a vehicle 26), the system controller 50 and/or a component controller 62 may be configured to compare first information and second information (e.g., angular velocity) from the first gyroscope 100 and the second gyroscope 102, respectively. If second information from a second gyroscope 102 is within a threshold of first information from the first gyroscope 100, the system controller 50 and/or a component controller 62 may determine that the component 24 is facing a first direction relative to the mounting surface 22 (e.g., forward). If the second information from the second gyroscope 102 is not within the threshold, the system controller 50 and/or a component controller 62 may determine that the component 24 is facing a second direction (e.g., rearward).
In embodiments, a first sensor 72, a second sensor 74, a magnetometer 80, 82, an accelerometer 90, 92, and/or a gyroscope 100, 102 may be function as an environmental sensor (e.g., may sense information about an environment of a component 24) and/or may be referred to herein an environmental sensor. A first sensor 72 and/or a second sensor 74 may, for example and without limitation, include a gravity sensor, a global positioning system (GPS) sensor, and/or a radiation (e.g., space, light, etc.) sensor.
In examples, such as generally illustrated in
With embodiments, such as generally illustrated in
In embodiments, such as generally illustrated in
In embodiments, such as generally illustrated in
In another embodiment, a single receiver 112a may be disposed in a fixed manner relative to the mounting surface 22 and each component 24 may include a respective pair of transmitters 110a, 110b that may transmit signals that may be at least slightly different (e.g., frequency, amplitude, etc.) and may be offset in a direction relevant to the receiver 112a (e.g., an X-direction if the receiver 112a is disposed proximate a front 22a of the mounting surface 22). A system controller 50 and/or a component controller 62 may determine that the front 24a of the component 24 is facing the receiver 112a if the signal from the first transmitter 110a is stronger than the signal from the second transmitter 110b, and/or may determine that the rear 24b of the component 24 is facing the receiver 112a if the signal from the second transmitter 110b is stronger than the signal from the first transmitter 110a.
With embodiments, an orientation sensor 70 may include a plurality of transmitters 110, such as for configurations in which components 24 may be connected to the mounting surface 22 in a large area. The transmitters 110 may be configured to transmit signals to respective areas of the mounting surface 22 and the areas may overlap. The signals transmitted by the transmitters 110 may be different (e.g., different frequency, amplitude, etc.). The transmitters 110 may, for instance, be disposed at or about opposite ends 22a, 22b and/or opposite sides 22c, 22d of the mounting surface 22, and/or may be disposed in an array about the mounting surface 22.
In embodiments, an orientation sensor 70 (e.g., the receivers 112), a system controller 50, and/or a component controller 62 may be configured to determine an angle of arrival and/or a time of flight corresponding to a signal or signals received by the one or more receivers 112 to determine the orientation of the component 24. For example and without limitation, the orientation sensor 70 may be configured to operate as a time-of-flight (ToF) sensor and/or an angle of arrival sensor. An angle of arrival (AoA) determination may include determining an orientation angle of the component 24 (e.g. in an X-Y plane), which may include an angle of 0 degrees or 180 degrees, an oblique angle, and/or a right angle.
With embodiments, a transmitter 110 and/or a receiver 112 may include and/or be configured as an antenna, such as a single-dimensional antenna and/or a multi-dimensional (e.g., 3-D) antenna. In embodiments with a plurality of transmitters (e.g., transmitters 110a, 110b, 110c, 110d), each transmitter may include and/or be configured as a respective antenna, some or all of which may be connected to a common transmitter unit/chip 114 that may be included with and/or connected to a system controller 50 or a component controller 62 (see, e.g.,
In embodiments with a plurality of receivers (e.g., receivers 112a, 112b), each receiver may include and/or be configured as a respective antenna, some or all of which may be connected to a common receiver unit/chip 116 that may be included with and/or connected to a system controller 50 and/or a component controller 62 (see, e.g.,
With embodiments, a transmitter 110 and/or a receiver 112 may be configured to transmit and receive (e.g., may be configured as a transceiver).
In embodiments, such as generally illustrated in
Additionally or alternatively, in embodiments, a system controller 50 may be configured to provide (e.g., via the power source 130) different voltages and/or currents to tracks 32, 34, 36, 38 of a track assembly 30. For example and without limitation, the system controller 50 may provide a first voltage of about 12 V to a first track 32 and/or a second voltage of about 12.5 V to a second track 34. If the electrical characteristic sensor 120 senses/detects the first voltage, the system controller 50, the component controller 62, the orientation sensor 70, and/or the electrical characteristic sensor 120 may determine that the component 24 has a first orientation (e.g., is facing forward/toward the front 22a). If the electrical characteristic sensor 120 senses/detects the second voltage, the system controller 50, the component controller 62, the orientation sensor 70, and/or the electrical characteristic sensor 120 may determine that the component 24 has a second orientation (e.g., is facing rearward/toward the rear 22b).
With examples, such as generally illustrated in
Additionally or alternatively, an orientation feature 140 may include a portion of a track (e.g., tracks 32, 36) of a pair of tracks that includes a particular color (e.g., black, white, green, red, etc.). The other track (e.g., tracks 34, 38) of the pair of tracks may include a different color or no color. The orientation feature sensor 142 may be configured to sense the color or lack of color (e.g., may be configured as an infrared (IR) sensor). The orientation sensor 70, the component controller 62, and/or the system controller 50 may determine the orientation of the component 24 according to information from the orientation feature sensor 142.
With embodiments, an orientation feature 140 may include one or a combination of (i) a formation (e.g., cut, dent, roughness, flange, recess, void etc.) of a track/rail (e.g., tracks/rails, 32, 36) configured to be sensed by the orientation feature sensor 142, (ii) a magnet or magnetic portion of a track/rail configured to be sensed by the orientation feature sensor 142, (iii) a portion of a track/rail having a color configured to be sensed by the orientation feature sensor 142, (iv) a mounting angle (e.g., one or more portions of a track 32, 36 may be disposed at different angle than the other track 34, 38), (v) one or more portions of a track 32, 36 having a different material (e.g., plastic, wood, metal) than the other track 34, 38, (vi) a track providing a different sound, and/or (vii) a track providing a different radiation (e.g., light).
In embodiments, such as generally illustrated in
With embodiments, a system controller 50 and/or a component controller 62 may be configured to control one or more safety devices 64 (see, e.g.,
With embodiments, such as generally illustrated in
In embodiments, a system controller 50, a component controller 62, and/or an orientation sensor 70 may be configured to communicate with each other, such as to share information relating to the orientation of a component 24, to determine the orientation of a component 24, and/or to share a determined/obtained orientation of a component 24.
While some exemplary embodiments are shown in the drawings for illustrative purposes with a track/rail assembly 30, embodiments of the current disclosure are not limited to configurations with track/rail assemblies 30. While some exemplary embodiments of track assemblies 30 are shown in the drawings for illustrative purposes as extending in an X-direction, embodiments of electrical systems 20 may include tracks that extend in other directions (e.g., the Y-direction, the Z-direction, etc.), extend at other angles, and/or that include a matrix-type configuration that may allow for a wide range of movement.
In embodiments, one or more actions/determinations described herein as conducted via the system controller 50 may additionally or alternatively be conducted, in whole or in part, via one or more component electrical units 60 and/or component controllers 62 thereof (and vice versa). The system controller 50 may, for example and without limitation, be configured to control movement of the mounting surface 22 and/or of an associated vehicle 26.
In examples, a controller (e.g., a system controller 50, a controller 62 of the component electrical unit 60, etc.) may include an electronic controller and/or include an electronic processor, such as a programmable microprocessor and/or microcontroller. In embodiments, a controller may include, for example, an application specific integrated circuit (ASIC). A controller may include a central processing unit (CPU), a memory (e.g., a non-transitory computer-readable storage medium), and/or an input/output (I/O) interface. A controller may be configured to perform various functions, including those described in greater detail herein, with appropriate programming instructions and/or code embodied in software, hardware, and/or other medium. In embodiments, a controller may include a plurality of controllers. In embodiments, a controller may be connected to a display, such as a touchscreen display.
Various examples/embodiments are described herein for various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the examples/embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the examples/embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the examples/embodiments described in the specification. Those of ordinary skill in the art will understand that the examples/embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.
Reference throughout the specification to “examples, “in examples,” “with examples,” “various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the example/embodiment is included in at least one embodiment. Thus, appearances of the phrases “examples, “in examples,” “with examples,” “in various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more examples/embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment/example may be combined, in whole or in part, with the features, structures, functions, and/or characteristics of one or more other embodiments/examples without limitation given that such combination is not illogical or non-functional. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope thereof.
It should be understood that references to a single element are not necessarily so limited and may include one or more of such element. Any directional references (e.g., plus, minus, upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the use of examples/embodiments.
Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are directly connected/coupled and in fixed relation to each other. The use of “e.g.” in the specification is to be construed broadly and is used to provide non-limiting examples of embodiments of the disclosure, and the disclosure is not limited to such examples. Uses of “and” and “or” are to be construed broadly (e.g., to be treated as “and/or”). For example and without limitation, uses of “and” do not necessarily require all elements or features listed, and uses of “or” are inclusive unless such a construction would be illogical.
While processes, systems, and methods may be described herein in connection with one or more steps in a particular sequence, it should be understood that such methods may be practiced with the steps in a different order, with certain steps performed simultaneously, with additional steps, and/or with certain described steps omitted.
All matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present disclosure.
It should be understood that a controller (e.g., the system controller 50, a component controller 62 of a component electrical unit 60, etc.), a system, and/or a processor as described herein may include a conventional processing apparatus known in the art, which may be capable of executing preprogrammed instructions stored in an associated memory, all performing in accordance with the functionality described herein. To the extent that the methods described herein are embodied in software, the resulting software can be stored in an associated memory and can also constitute means for performing such methods. Such a system or processor may further be of the type having ROM, RAM, RAM and ROM, and/or a combination of non-volatile and volatile memory so that any software may be stored and yet allow storage and processing of dynamically produced data and/or signals.
It should be further understood that an article of manufacture in accordance with this disclosure may include a non-transitory computer-readable storage medium having a computer program encoded thereon for implementing logic and other functionality described herein. The computer program may include code to perform one or more of the methods disclosed herein. Such embodiments may be configured to execute via one or more processors, such as multiple processors that are integrated into a single system or are distributed over and connected together through a communications network, and the communications network may be wired and/or wireless. Code for implementing one or more of the features described in connection with one or more embodiments may, when executed by a processor, cause a plurality of transistors to change from a first state to a second state. A specific pattern of change (e.g., which transistors change state and which transistors do not), may be dictated, at least partially, by the logic and/or code.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/910,652, filed on Oct. 4, 2019, the disclosure of which is hereby incorporated by reference in its entirety as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2126143 | McGregor | Aug 1938 | A |
2263554 | Brach | Nov 1941 | A |
2480622 | Warnock | Aug 1949 | A |
2678082 | Nathan | May 1954 | A |
3181102 | Fehr | Apr 1965 | A |
3213403 | Hermann | Oct 1965 | A |
3268848 | Adams | Aug 1966 | A |
3603918 | Woertz | Sep 1971 | A |
3933403 | Rubesamen et al. | Jan 1976 | A |
3940182 | Tamura | Feb 1976 | A |
4020769 | Keir | May 1977 | A |
4198025 | Lowe et al. | Apr 1980 | A |
4243248 | Scholz et al. | Jan 1981 | A |
4282631 | Uehara et al. | Aug 1981 | A |
4511187 | Rees | Apr 1985 | A |
4575295 | Rebentisch | Mar 1986 | A |
4618808 | Ish-Shalom et al. | Oct 1986 | A |
4707030 | Harding | Nov 1987 | A |
4711589 | Goodbred | Dec 1987 | A |
4763360 | Daniels et al. | Aug 1988 | A |
4776809 | Hall | Oct 1988 | A |
4830531 | Condit et al. | May 1989 | A |
4853555 | Wheat | Aug 1989 | A |
4961559 | Raymor | Oct 1990 | A |
4969621 | Munchow et al. | Nov 1990 | A |
4987316 | White et al. | Jan 1991 | A |
5106144 | Hayakawa et al. | Apr 1992 | A |
5137331 | Colozza | Aug 1992 | A |
5167393 | Hayakawa et al. | Dec 1992 | A |
5192045 | Yamada et al. | Mar 1993 | A |
5222814 | Boelryk | Jun 1993 | A |
5302065 | Vogg et al. | Apr 1994 | A |
5322982 | Leger et al. | Jun 1994 | A |
5332290 | Borlinghaus et al. | Jul 1994 | A |
5348373 | Stiennon | Sep 1994 | A |
5362241 | Matsuoka et al. | Nov 1994 | A |
5446442 | Swart et al. | Aug 1995 | A |
5466892 | Howard et al. | Nov 1995 | A |
5489173 | Hofle | Feb 1996 | A |
5582381 | Graf et al. | Dec 1996 | A |
5599086 | Dutta | Feb 1997 | A |
5618192 | Drury | Apr 1997 | A |
5655816 | Magnuson et al. | Aug 1997 | A |
5676341 | Tarusawa et al. | Oct 1997 | A |
5696409 | Handman et al. | Dec 1997 | A |
5701037 | Weber et al. | Dec 1997 | A |
5796177 | Werbelow et al. | Aug 1998 | A |
5800015 | Tsuchiya et al. | Sep 1998 | A |
5899532 | Paisley et al. | May 1999 | A |
5918847 | Couasnon | Jul 1999 | A |
5921606 | Moradell et al. | Jul 1999 | A |
5964442 | Wingblad et al. | Oct 1999 | A |
5964815 | Wallace et al. | Oct 1999 | A |
6008547 | Dobler et al. | Dec 1999 | A |
6036157 | Baroin et al. | Mar 2000 | A |
6081044 | Anthofer et al. | Jun 2000 | A |
6142718 | Kroll | Nov 2000 | A |
6150774 | Mueller et al. | Nov 2000 | A |
6166451 | Pigott | Dec 2000 | A |
6216995 | Koester | Apr 2001 | B1 |
6227595 | Hamelin et al. | May 2001 | B1 |
6290516 | Gerber | Sep 2001 | B1 |
6296498 | Ross | Oct 2001 | B1 |
6299230 | Oettl | Oct 2001 | B1 |
6318802 | Sjostrom et al. | Nov 2001 | B1 |
6325645 | Schuite | Dec 2001 | B1 |
6357814 | Boisset et al. | Mar 2002 | B1 |
6400259 | Bourcart et al. | Jun 2002 | B1 |
6405988 | Taylor et al. | Jun 2002 | B1 |
6422596 | Fendt et al. | Jul 2002 | B1 |
6439531 | Severini et al. | Aug 2002 | B1 |
6480144 | Miller et al. | Nov 2002 | B1 |
6565119 | Fogle, Jr. | May 2003 | B2 |
6566765 | Nitschke et al. | May 2003 | B1 |
6588722 | Eguchi et al. | Jul 2003 | B2 |
6693368 | Schumann et al. | Feb 2004 | B2 |
6710470 | Bauer et al. | Mar 2004 | B2 |
6719350 | Duchateau et al. | Apr 2004 | B2 |
6736458 | Chabanne et al. | May 2004 | B2 |
6772056 | Mattes et al. | Aug 2004 | B2 |
6805375 | Enders et al. | Oct 2004 | B2 |
6851708 | Kazmierczak | Feb 2005 | B2 |
6869057 | Matsumoto et al. | Mar 2005 | B2 |
6882162 | Schirmer et al. | Apr 2005 | B2 |
6960993 | Mattes et al. | Nov 2005 | B2 |
7042342 | Luo et al. | May 2006 | B2 |
7083437 | Mackness | Aug 2006 | B2 |
7086874 | Mitchell et al. | Aug 2006 | B2 |
7113541 | Lys et al. | Sep 2006 | B1 |
7159899 | Nitschke et al. | Jan 2007 | B2 |
7170192 | Kazmierczak | Jan 2007 | B2 |
7188805 | Henley et al. | Mar 2007 | B2 |
7207541 | Frohnhaus et al. | Apr 2007 | B2 |
7271501 | Dukart et al. | Sep 2007 | B2 |
7288009 | Lawrence et al. | Oct 2007 | B2 |
7293831 | Greene | Nov 2007 | B2 |
7300091 | Nihonmatsu et al. | Nov 2007 | B2 |
7322605 | Ventura et al. | Jan 2008 | B2 |
7348687 | Aichriedler et al. | Mar 2008 | B2 |
7363194 | Schlick et al. | Apr 2008 | B2 |
7370831 | Laib et al. | May 2008 | B2 |
7388466 | Ghabra et al. | Jun 2008 | B2 |
7389960 | Mitchell et al. | Jun 2008 | B2 |
7416042 | Czaykowska et al. | Aug 2008 | B2 |
7434883 | Deptolla | Oct 2008 | B2 |
7454170 | Goossens et al. | Nov 2008 | B2 |
7455535 | Insalaco et al. | Nov 2008 | B2 |
7503522 | Henley et al. | Mar 2009 | B2 |
7505754 | Kazmierczak et al. | Mar 2009 | B2 |
7523913 | Mizuno et al. | Apr 2009 | B2 |
7556233 | Gryp et al. | Jul 2009 | B2 |
7560827 | Jacas-Miret et al. | Jul 2009 | B2 |
7633301 | Steenwyk et al. | Dec 2009 | B2 |
7661637 | Mejuhas et al. | Feb 2010 | B2 |
7665939 | Cardona | Feb 2010 | B1 |
7739820 | Frank | Jun 2010 | B2 |
7744386 | Speidel et al. | Jun 2010 | B1 |
7980525 | Kostin | Jul 2011 | B2 |
7980798 | Kuehn et al. | Jul 2011 | B1 |
8010255 | Darraba | Aug 2011 | B2 |
8146991 | Stanz et al. | Apr 2012 | B2 |
8278840 | Logiudice et al. | Oct 2012 | B2 |
8282326 | Krostue et al. | Oct 2012 | B2 |
8376675 | Schulze et al. | Feb 2013 | B2 |
8463501 | Jousse | Jun 2013 | B2 |
8536928 | Gagne et al. | Sep 2013 | B1 |
8648613 | Ewerhart et al. | Feb 2014 | B2 |
8702170 | Abraham et al. | Apr 2014 | B2 |
8757720 | Hurst, III et al. | Jun 2014 | B2 |
8800949 | Schebaum et al. | Aug 2014 | B2 |
8857778 | Nonomiya | Oct 2014 | B2 |
8936526 | Boutouil et al. | Jan 2015 | B2 |
8967719 | Ngiau et al. | Mar 2015 | B2 |
RE45456 | Sinclair et al. | Apr 2015 | E |
9010712 | Gray et al. | Apr 2015 | B2 |
9018869 | Yuasa et al. | Apr 2015 | B2 |
9045061 | Kostin et al. | Jun 2015 | B2 |
9162590 | Nagura et al. | Oct 2015 | B2 |
9174604 | Wellhoefer et al. | Nov 2015 | B2 |
9242580 | Schebaum et al. | Jan 2016 | B2 |
9318922 | Hall et al. | Apr 2016 | B2 |
9340125 | Stutika et al. | May 2016 | B2 |
9346428 | Bortolin | May 2016 | B2 |
9422058 | Fischer et al. | Aug 2016 | B2 |
9561770 | Sievers et al. | Feb 2017 | B2 |
9608392 | Destro | Mar 2017 | B1 |
9610862 | Bonk et al. | Apr 2017 | B2 |
9663232 | Porter et al. | May 2017 | B1 |
9673583 | Hudson et al. | Jun 2017 | B2 |
9701217 | Eckenroth et al. | Jul 2017 | B2 |
9731628 | Rao et al. | Aug 2017 | B1 |
9758061 | Pluta et al. | Sep 2017 | B2 |
9789834 | Rapp et al. | Oct 2017 | B2 |
9796304 | Salter et al. | Oct 2017 | B2 |
9815425 | Rao et al. | Nov 2017 | B2 |
9821681 | Rao et al. | Nov 2017 | B2 |
9840220 | Van Buskirk et al. | Dec 2017 | B2 |
9919624 | Cziomer et al. | Mar 2018 | B2 |
9950682 | Gramenos et al. | Apr 2018 | B1 |
10059232 | Frye et al. | Aug 2018 | B2 |
10160351 | Sugimoto et al. | Dec 2018 | B2 |
10479227 | Nolte et al. | Nov 2019 | B2 |
10493243 | Braham | Dec 2019 | B1 |
10547135 | Sugiura | Jan 2020 | B2 |
10549659 | Sullivan et al. | Feb 2020 | B2 |
10654378 | Pons | May 2020 | B2 |
20050046367 | Wevers et al. | Mar 2005 | A1 |
20050089367 | Sempliner | Apr 2005 | A1 |
20050150705 | Vincent et al. | Jul 2005 | A1 |
20050211835 | Henley et al. | Sep 2005 | A1 |
20050215098 | Muramatsu et al. | Sep 2005 | A1 |
20050230543 | Laib et al. | Oct 2005 | A1 |
20050236899 | Kazmierczak | Oct 2005 | A1 |
20050258676 | Mitchell et al. | Nov 2005 | A1 |
20060131470 | Yamada et al. | Jun 2006 | A1 |
20060208549 | Hancock et al. | Sep 2006 | A1 |
20060220411 | Pathak et al. | Oct 2006 | A1 |
20080021602 | Kingham et al. | Jan 2008 | A1 |
20080084085 | Mizuno et al. | Apr 2008 | A1 |
20080090432 | Patterson et al. | Apr 2008 | A1 |
20090014584 | Rudduck et al. | Jan 2009 | A1 |
20090129105 | Kusu et al. | May 2009 | A1 |
20090251920 | Kino et al. | Oct 2009 | A1 |
20090259369 | Saban | Oct 2009 | A1 |
20090302665 | Dowty | Dec 2009 | A1 |
20090319212 | Cech et al. | Dec 2009 | A1 |
20100117275 | Nakamura | May 2010 | A1 |
20110024595 | Oi et al. | Feb 2011 | A1 |
20110225773 | Hearn et al. | Sep 2011 | A1 |
20120112032 | Kohen | May 2012 | A1 |
20130020459 | Moriyama et al. | Jan 2013 | A1 |
20130035994 | Pattan et al. | Feb 2013 | A1 |
20130153735 | Ruthman et al. | Jun 2013 | A1 |
20140110554 | Oya et al. | Apr 2014 | A1 |
20140263920 | Anticuar et al. | Sep 2014 | A1 |
20140265479 | Bennett | Sep 2014 | A1 |
20150048206 | Deloubes | Feb 2015 | A1 |
20150069807 | Kienke | Mar 2015 | A1 |
20150083882 | Stutika et al. | Mar 2015 | A1 |
20150191106 | Inoue et al. | Jul 2015 | A1 |
20150236462 | Davidson, Jr. et al. | Aug 2015 | A1 |
20160039314 | Anticuar et al. | Feb 2016 | A1 |
20160154170 | Thompson et al. | Jun 2016 | A1 |
20160236613 | Trier | Aug 2016 | A1 |
20170080825 | Bonk et al. | Mar 2017 | A1 |
20170080826 | Bonk et al. | Mar 2017 | A1 |
20170166093 | Cziomer et al. | Jun 2017 | A1 |
20170261343 | Lanter et al. | Sep 2017 | A1 |
20170291507 | Hattori et al. | Oct 2017 | A1 |
20180017189 | Wegner | Jan 2018 | A1 |
20180039917 | Buttolo et al. | Feb 2018 | A1 |
20180072188 | Yamada | Mar 2018 | A1 |
20180086232 | Kume | Mar 2018 | A1 |
20180105072 | Pons | Apr 2018 | A1 |
20180148011 | Zaugg et al. | May 2018 | A1 |
20180154799 | Lota | Jun 2018 | A1 |
20180183623 | Schoenfeld et al. | Jun 2018 | A1 |
20180244175 | Tan | Aug 2018 | A1 |
20180275648 | Ramalingam | Sep 2018 | A1 |
20190001846 | Jackson et al. | Jan 2019 | A1 |
20190084453 | Petit et al. | Mar 2019 | A1 |
20190126786 | Dry et al. | May 2019 | A1 |
20190337413 | Romer | Nov 2019 | A1 |
20190337414 | Condamin et al. | Nov 2019 | A1 |
20190337415 | Condamin et al. | Nov 2019 | A1 |
20190337416 | Condamin et al. | Nov 2019 | A1 |
20190337417 | Condamin et al. | Nov 2019 | A1 |
20190337418 | Condamin et al. | Nov 2019 | A1 |
20190337419 | Condamin et al. | Nov 2019 | A1 |
20190337420 | Condamin et al. | Nov 2019 | A1 |
20190337421 | Condamin et al. | Nov 2019 | A1 |
20190337422 | Condamin et al. | Nov 2019 | A1 |
20190337471 | Brehm | Nov 2019 | A1 |
20190379187 | Christensen et al. | Dec 2019 | A1 |
20190389336 | Malinowski et al. | Dec 2019 | A1 |
20200009995 | Sonar | Jan 2020 | A1 |
20200047641 | D'Eramo et al. | Feb 2020 | A1 |
20200055423 | Prozzi et al. | Feb 2020 | A1 |
20200079244 | Carbone et al. | Mar 2020 | A1 |
20200180516 | Moulin | Jun 2020 | A1 |
20200180517 | Moulin | Jun 2020 | A1 |
20200189504 | Ricart et al. | Jun 2020 | A1 |
20200189511 | Ricart et al. | Jun 2020 | A1 |
20200194936 | Ricart et al. | Jun 2020 | A1 |
20200194948 | Lammers et al. | Jun 2020 | A1 |
20200207241 | Moulin et al. | Jul 2020 | A1 |
20200247275 | Yetukuri et al. | Aug 2020 | A1 |
20200262367 | Fernandez Banares et al. | Aug 2020 | A1 |
20200269754 | Ricart et al. | Aug 2020 | A1 |
20200282871 | Ricart et al. | Sep 2020 | A1 |
20200282880 | Jones et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
203190203 | Sep 2013 | CN |
203799201 | Aug 2014 | CN |
202005013714 | Dec 2005 | DE |
102005007430 | Mar 2006 | DE |
102006022032 | Dec 2006 | DE |
102010017038 | Feb 2011 | DE |
102011056278 | Feb 2013 | DE |
202014102336 | Jun 2014 | DE |
102015212100 | Dec 2015 | DE |
102016113409 | Apr 2017 | DE |
0783990 | Jul 1997 | EP |
1176047 | Jan 2002 | EP |
2298609 | Mar 2011 | EP |
3150426 | Apr 2017 | EP |
2762814 | Nov 1998 | FR |
2951329 | Apr 2011 | FR |
2986751 | Aug 2013 | FR |
3314591 | Aug 2002 | JP |
2003227703 | Aug 2003 | JP |
2005119518 | May 2005 | JP |
2007112174 | May 2007 | JP |
2008158578 | Jul 2008 | JP |
4222262 | Feb 2009 | JP |
2013230721 | Nov 2013 | JP |
0187665 | Nov 2001 | WO |
2003002256 | Jan 2003 | WO |
2005068247 | Jul 2005 | WO |
Entry |
---|
Co-Pending U.S. Appl. No. 16/597,187, filed Oct. 9, 2019. |
Co-Pending U.S. Appl. No. 16/672,989, filed Nov. 4, 2019. |
Co-Pending U.S. Appl. No. 16/711,661, filed Dec. 12, 2019. |
Co-Pending U.S. Appl. No. 17/060,635, filed Oct. 1, 2020. |
Co-Pending U.S. Appl. No. 17/060,985, filed Oct. 1, 2020. |
Number | Date | Country | |
---|---|---|---|
20210105011 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62910652 | Oct 2019 | US |