The invention generally relates to an electrical terminal.
Electrical devices, such as heating elements or antenna elements, are often formed on or within the front or rear windows of a motor vehicle. In order to electrically connect the on-glass elements to electrical circuitry, such as a power supply or a radio receiver/transmitter, an electrical terminal, usually a male terminal, is soldered to the glass and is electrically connected with the electrical circuitry. A female terminal at the end of a cable connected to the power supply is then mated with the male terminal located on the glass.
In some applications, the male terminal has a male cylindrical post and the mating female terminal may have a cup shaped female socket having resilient contact tabs for engaging the cylindrical post. The contact tabs are bent inwardly into the socket for resilient engagement. The cup shaped socket of the female terminal is usually staked or riveted to a separate base piece which in turn is crimped to a conductor within the cable and housed within an insulative cover. The conductor may also be soldered directly to the cup shaped socket of the female terminal.
According to one embodiment of the invention, an electrical terminal is provided. The electrical terminal includes a base plate and a plurality of contact arms extending from the base plate around a longitudinal axis. The plurality of contact arms form a socket that is configured to receive a mating electrical terminal. The electrical contact also includes a wire attachment feature extending from the base plate and defining crimp wings configured to mechanically and electrically attach the electrical terminal to a wire cable.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, the wire attachment feature extends from a free end of one of the contact arms in the plurality of contact arms.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, the plurality of contact arms are evenly radially spaced around the longitudinal axis.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, the electrical terminal is formed of a single piece of sheet metal.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, the wire attachment feature is longitudinally offset from the base plate.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, the base plate has a circular shape.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, each contact arm forms a serpentine shape having a convex curve and a concave curve.
In an example embodiment having one or more features of the electrical terminal of the previous paragraph, a first aperture is defined in the base plate.
According to another embodiment of the invention, an electrical connector assembly is provided. The electrical connector assembly includes the electrical terminal described in the previous paragraphs and further includes a cover formed of dielectric material defining a cavity in which the base plate and the plurality of contact arms are received and from which the wire attachment feature extends.
An example embodiment having one or more features of the electrical connector assembly of the previous paragraph further includes an attachment stud extending from the cover having a flexible first tapered member extending outwardly from the attachment stud and tapered upwardly toward a cover cap of the cover. The attachment stud extends through the first aperture in the base plate and the first tapered member engages the base plate, thereby securing the cover to the electrical terminal.
In an example embodiment having one or more features of the electrical connector assembly of the previous paragraph, the cover defines a second aperture in the cover cap axially aligned with the first aperture in the base plate. The attachment stud extends through the second aperture in the cover cap.
An example embodiment having one or more features of the electrical connector assembly of the previous paragraph further includes the mating electrical terminal. The mating electrical terminal has a generally cylindrical shape with a tapered outer sidewall. The mating electrical terminal defines a third aperture axially aligned with the first aperture in the base plate and the second aperture in the cover cap. The attachment stud has a pointed tip opposite the head. The attachment stud has a flexible second tapered member extending outwardly from the attachment stud and tapered upwardly away from the pointed tip of the attachment stud. The attachment stud extends through the third aperture in the mating electrical terminal and the second tapered member engages the mating electrical terminal, thereby further securing the cover to the mating electrical terminal.
In an example embodiment having one or more features of the electrical connector assembly of the previous paragraph, the mating electrical terminal is a button snap connector.
According to yet another embodiment of the invention, an electrical connector assembly is provided. The electrical connector assembly includes an electrical terminal defining a first aperture and a cover formed of dielectric material defining a cavity in which at least a portion of the electrical terminal is received. The cover defines a second aperture coaxial with the first aperture. The electrical connector assembly also includes an attachment stud having a flexible first tapered member extending outwardly from the attachment stud and tapered upwardly toward a head of the attachment stud. The attachment stud extends through the second aperture. The attachment stud further extends through the first aperture and the first tapered member engages the electrical terminal, thereby securing the cover to the electrical terminal.
An example embodiment having one or more features of the electrical connector assembly of the previous paragraph further includes a mating electrical terminal configured to receive the electrical terminal. The mating electrical terminal defines a third aperture axially aligned with the first aperture in the electrical terminal and the second aperture in the cover. The attachment stud has a pointed tip opposite the head. The attachment stud has a flexible second tapered member extending outwardly from the attachment stud and tapered upwardly away from the pointed tip of the attachment stud. The attachment stud extends through the third aperture in the mating electrical terminal and the second tapered member engages the mating electrical terminal, thereby securing the cover to the mating electrical terminal.
According to one more embodiment of the invention, a method of forming an electrical connector assembly is provided. The method includes the step of stamping an electrical terminal preform from a sheet of metal. The electrical terminal preform has a base plate, a plurality of contact arms radially extending from the base plate, a wire attachment feature radially extending from the base plate and defining crimp wings, and a carrier strip. The method also includes the step of bending each of the plurality of contact arms to form a serpentine shape having a convex curve and a concave curve. The plurality of contact arms define a socket configured to receive a mating electrical terminal, thereby forming an electrical terminal.
An example embodiment having one or more features of the method of the previous paragraph further includes the step of bending a portion of the wire attachment feature to form a serpentine shape having a convex curve and a concave curve, wherein the portion of the wire attachment feature is one of the contact arms in the plurality of contact arms.
An example embodiment having one or more features of the method of the previous paragraph further includes the step of forming a first aperture in the base plate.
An example embodiment having one or more features of the method of the previous paragraph further includes the step of disposing the base plate and the plurality of contact arms within a cavity of a cover formed of dielectric material.
An example embodiment having one or more features of the method of the previous paragraph further includes the step of inserting a attachment stud extending from the cover through the first aperture in the base plate. The attachment stud has a flexible first tapered member extending outwardly from the attachment stud and tapered upwardly toward a cover cap of the cover. The first tapered member engages the base plate, thereby securing the cover to the base plate.
In an example embodiment having one or more features of the electrical connector assembly of the previous paragraph, the cover defines a second aperture in the cover cap axially aligned with the first aperture in the base plate. The method further includes the step of inserting the attachment stud through the second aperture in the cover cap.
In an example embodiment having one or more features of the electrical connector assembly of the previous paragraph, the mating electrical terminal has a generally cylindrical shape with a tapered outer sidewall. The mating electrical terminal defines a third aperture axially aligned with the first aperture in the base plate and the second aperture in the cover cap. The attachment stud has a pointed tip opposite the head. The attachment stud has a flexible second tapered member extending outwardly from the attachment stud and tapered upwardly away from the pointed tip of the attachment stud. The method further includes the steps of inserting the mating electrical terminal within the socket of the electrical terminal and inserting the attachment stud extends through the third aperture in the mating electrical terminal. The second tapered member engages the mating electrical terminal, thereby further securing the cover to the mating electrical terminal.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
Alternative embodiments of the terminal may be envisioned that have as few as three or more than six contact arms.
Each contact arm 14 has a fixed end 22 attached to the base plate 12 and a free end 24 at a distal end of the contact arm 14. Each contact arm 14 defines a convex curve 26 near the fixed end 22 and a concave curve 28 near the free end 24, thereby forming a serpentine or S-shaped curve such that the free ends 24 of the contact arms 14 extend outwardly relative to the opening 18 to allow easy insertion and removal of the mating terminal 102 from the socket 16. The distal edges of the base plate 12 are also rounded into a convex curve between the contact arms 14. The terminal 10 also includes a wire attachment feature 30 that extends from of one of the contact arms 14. The wire attachment feature 30 defines a pair or crimp wings 32 that are configured to mechanically and electrically attach the terminal 10 to a wire cable (not shown) that is electrically connected with electrical circuitry, e.g. circuitry associated with a radio receiver, radio transmitter, or defroster. As shown, the wire attachment feature 30 is longitudinally offset from the base plate 12. The wire attachment feature 30 is also longitudinally offset from the free ends 24 of the contact arms 14.
In alternative embodiments of the terminal, the wire attachment feature may further define a pair of insulation crimp wings (now shown) that are configured to attached to the insulation jacket of the wire cable. In addition or alternatively, the wire attachment feature may extend directly from the base plate rather than from one of the contact arms.
The terminal 10 is formed of a single piece of sheet metal material, such as a silver plated brass material. A flat terminal preform 34, as shown in
The connector assembly 100 further includes a cover 110 that is formed of a dielectric polymer material. The cover 110 defines a cavity 112 in which the base plate 12 and the plurality of contact arms 14 are received and from which the wire attachment feature 30 extends.
The cover 110 is secured to the terminal 10 and the mating terminal 102 by an attachment stud, hereinafter referred to as the stud 114. The stud 114 has a flattened head 116 on one end and a pointed tip 118 on the other. The stud 114 has a flexible first tapered member 120, in the illustrated example a flexible first tapered diaphragm encircling the shaft of the stud 114 and tapered upwardly toward the head 116 of the stud 114. The stud 114 also has a flexible second tapered member 122, in the illustrated example a flexible second tapered diaphragm encircling the shaft of the stud 114 and tapered upwardly away from the tip 118 of the stud 114. The material forming the stud 114 is also a dielectric polymer material.
As shown in
The base plate 12 of the terminal 10 defines a circular terminal aperture 40 extending therethrough. Likewise, a cover cap 124 of the cover 110 defines a circular cover aperture 126 extending therethrough and the mating terminal 102 also defines a circular mating terminal aperture 128 extending therethrough. The terminal 10 aperture, the cover aperture 126, and the mating terminal 102 aperture are longitudinally aligned and are substantially coaxial with one another. The terminal aperture 40 has a larger diameter than the mating terminal aperture 128 and the cover aperture 126 has a larger diameter than the terminal aperture 40.
As shown in
In alternative embodiments of the connector assembly, the attachment stud may be formed by the cover cap and extends from the bottom of the cover cap. In other alternative embodiments, the first and second flexible members may be tapered fingers extending from the shaft of the stud, such as those found on “Christmas tree” fasteners commonly used in the automotive industry.
STEP 202, STAMP AN ELECTRICAL TERMINAL PREFORM FROM A SHEET OF METAL, includes stamping the terminal preform 34 from a sheet of metal. The terminal preform 34 has a base plate 12, a plurality of contact arms 14 radially extending from the base plate 12, a wire attachment feature 30 radially extending from the base plate 12 and defining crimp wings 32, and a carrier strip 36;
STEP 204, BEND EACH OF THE PLURALITY OF CONTACT ARMS TO FORM A SOCKET, includes bending each of the plurality of contact arms 14 to form a socket 16 configured to receive the mating terminal 102;
STEP 206, BEND A PORTION OF THE WIRE ATTACHMENT FEATURE TO FORM A CONTACT ARM, includes bending a portion of the wire attachment feature 30 to form one of the contact arms 14 in the plurality of contact arms 14;
STEP 208, FORM A FIRST APERTURE IN THE BASE PLATE, includes forming the terminal aperture 40 in the base plate 12;
STEP 210, DISPOSE THE BASE PLATE AND THE PLURALITY OF CONTACT ARMS WITHIN A CAVITY OF A COVER FORMED OF DIELECTRIC MATERIAL, includes disposing the base plate 12 and the plurality of contact arms 14 within a cavity 112 of a cover 110 formed of dielectric material;
STEP 212, INSERT A MOUNTING STUD EXTENDING FROM THE COVER THROUGH THE FIRST APERTURE IN THE BASE PLATE, includes inserting the stud 114 extending from the cover 110 through the terminal aperture 40 in the base plate 12. The stud 114 has a flexible first tapered member 120 extending outwardly from the stud 114 and tapered upwardly toward a cover cap 124 of the cover 110. The first tapered member 120 engages the base plate 12, thereby securing the cover 110 to the base plate 12;
STEP 214, INSERT THE MOUNTING STUD THROUGH THE SECOND APERTURE IN THE COVER CAP, includes inserting the stud 114 through the cover aperture 126 in the cover cap 124. The cover 110 defines the cover aperture 126 in the cover cap 124 which is axially aligned with the terminal aperture 40 in the base plate 12;
STEP 216, INSERT THE MATING ELECTRICAL TERMINAL WITHIN THE SOCKET OF THE ELECTRICAL TERMINAL, inserting the mating terminal 102 within the socket 16 of the terminal 10. The mating terminal 102 has a generally cylindrical shape with a tapered outer sidewall 104. The mating terminal 102 defines a mating terminal aperture 128 axially aligned with the terminal aperture 40 in the base plate 12 and the cover aperture 126 in the cover cap 124; and
STEP 218, INSERT THE MOUNTING STUD THROUGH THE THIRD APERTURE IN THE MATING ELECTRICAL TERMINAL, includes inserting the stud 114 extends through the mating terminal aperture 128 in the mating terminal 102. The stud 114 has a pointed tip 118 opposite the head 116. The stud 114 has a flexible second tapered member 122 extending outwardly from the stud 114 and tapered upwardly away from the pointed tip 118 of the stud 114. The second tapered member 122 engages the mating terminal 102, thereby further securing the cover 110 to the mating terminal 102.
Accordingly, an electrical terminal 10, an electrical connector assembly 100, and a method 200 of forming the electrical terminal 10 and the electrical connector assembly 100 is provided. The method 200 produces a one-piece terminal 10 that provides the benefits of lower manufacturing costs and a simpler manufacturing process compared to similar prior art female terminals. The terminal 10 is also more robust and reliable and has improved electrical resistance characteristics compared to the prior art two piece terminals. The design of the terminal 10 allows a more compact cover 110, thereby providing the benefit of reduced material usage and cost for forming the cover 110 and the reduced size of the cover 110 provides a connector assembly 100 that can more easily be packaged in a vehicle. Additionally, the stud 114 provides the benefit of not only attaching the cover 110 to the terminal 10 but also attaching the terminal 10 to the mating terminal 102.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to configure a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely prototypical embodiments.
Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the following claims, along with the full scope of equivalents to which such claims are entitled.
As used herein, ‘one or more’ includes a function being performed by one element, a function being performed by more than one element, e.g., in a distributed fashion, several functions being performed by one element, several functions being performed by several elements, or any combination of the above.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, without departing from the scope of the various described embodiments. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Additionally, while terms of ordinance or orientation may be used herein these elements should not be limited by these terms. All terms of ordinance or orientation, unless stated otherwise, are used for purposes distinguishing one element from another, and do not denote any particular order, order of operations, direction or orientation unless stated otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4024953 | Nailor, III | May 1977 | A |
4671591 | Archer | Jun 1987 | A |
5980338 | Le Pottier | Nov 1999 | A |
6039616 | Pereira | Mar 2000 | A |
6249966 | Pereira et al. | Jun 2001 | B1 |
6475043 | Pereira et al. | Nov 2002 | B2 |
6599156 | Pereira | Jul 2003 | B2 |
6599157 | Pereira et al. | Jul 2003 | B2 |
6607409 | Machado | Aug 2003 | B2 |
6676455 | Machado | Jan 2004 | B2 |
6699080 | Costa | Mar 2004 | B1 |
6800001 | Costa | Oct 2004 | B1 |
D521933 | Wade | May 2006 | S |
8002593 | Machado et al. | Aug 2011 | B2 |
8496503 | Lamoureux et al. | Jul 2013 | B2 |
20030013352 | Machado | Jan 2003 | A1 |