Electrical terminal socket assembly including T shaped sealed connectors

Information

  • Patent Grant
  • 6656002
  • Patent Number
    6,656,002
  • Date Filed
    Thursday, May 9, 2002
    22 years ago
  • Date Issued
    Tuesday, December 2, 2003
    21 years ago
Abstract
A terminal socket assembly including a T-shaped sealed connector for interconnecting electrically powered vehicular components with a male input pin and output cable. A spring cage is formed into a substantially helix “hourglass shape” configuration. A tubular sleeve receives the configured spring cage in axially inserting fashion and includes first and second extending bracket portions which are biased towards each other to create a compressing and interference fit with the inserted spring cage. The assembled sleeve and spring cage is receives and engaging and inserting portion of the male pin. Gripping portions extend from a selected bracket portion and fixedly engage an extending end of a cable to electrically communicate the two cables. A sealed connector housing forms a part of and encases the terminal socket assembly and extending connector cables and includes assembleable male and female housing portions and end seals.
Description




FIELD OF THE INVENTION




The present invention relates generally to sealed power connectors and feed attachments, such including resilient engagement capability. More particularly, the present invention is directed to an electrical terminal socket which incorporates a hectically wound and compressible spring cage and an encircling tubular shaped and compressible terminal sleeve for holding the spring cage in place. The present assembly provides a low cost solution for a quick connect assembly and which requires a much greater degree of torque control in assembly as opposed to prior art bolt and nut type cable connections. The present invention further discloses variations of “T” shaped sealed connection assemblies, and which include the terminal socket assembly enclosed within interengaging male and female outer connecting portions, for better insulating and sealing the electrical connections established by the socket assembly.




BACKGROUND OF THE INVENTION




Electrical connectors of the terminal socket variety are well known in the art, one primary application of which being in the automotive field for establishing connections between heavier sized output cable and components such as generators or alternators. The frictional grip imparted by the connector must be of sufficient strength to maintain firm mechanical and adequate electrical connection, yet must permit relatively easy manual withdrawal or insertion of a prong into the connector socket.




One type of known prior art electrical cable connection is the bolt-nut type electrical cable connection. A significant problem associated with such bolt and nut arrangements arises from the amount of torque which is necessary to assemble the connector and the difficult quality control issues which arise from its large scale use such as over torque, under torque and cross thread.




Generally, it has also been difficult to manufacture spring cage socket terminals, designed from either a single piece of material or assembled from parts, which may include a plurality of individual connector strips or wires. In instances where the terminal is constructed in one piece, several complex machining and forming steps are required. Additionally, construction of a socket terminal starting with individual contact strips requires a tedious assembly process and involving more than four (4) components. As such, manual assembly involving socket terminals is both an intricate and difficult task, as well as a necessary one, and significantly increases a cost of production associated with the connector.




Another example of a radially resilient terminal socket is set forth in U.S. Pat. No. 4,657,335, issued to Koch, and which teaches constructing a barrel terminal socket by forming a sheet metal blank with uniformly spaced, parallel, longitudinal strips integrally connected at their opposite ends to transversely extending webs. The blank is then formed into a cylinder, inserted into a close-fitting cylindrical sleeve and one end of the blank is fixedly secured to the sleeve. The opposite end of the blank is then rotated relative to the sleeve through a predetermined angle and then fixedly secured in its rotated position to the sleeve. Accordingly, Koch teaches a multiple of individual assembly steps and the use of no less than five (5) separate components, which are necessary to complete the construction of the terminal socket.




U.S. Pat. No. 4,734,063, also issued to Koch, discloses additional, methods and techniques for constructing the barrel terminal, including the contactor strip portions being provided as a plurality of individual and spaced apart blanks attached to a carrier strip (46). Each blank is advanced through a number of work stations and assembled utilizing no less than four (4) components, such varied assembly steps including forming the contactor strips into a hollow barrel configuration and fitting the sleeve onto the barrel configured blank.




In summary, the above two prior art patents each utilize at least four (4) or more components in order to construct a power terminal, the net effect of which is to increase the cost, render more complex the design, and slow processing of the parts. It is further found that the provision of many joints, connecting these components together, decreases the effective contact surface for effecting the electrical communication, and has been found to be less reliable and have more potential failure modes.




In sum, it has been determined that it is important to maintain sufficient contact surface and in order to guarantee that an adequate amount of electrical current is carried through the terminal assembly.




SUMMARY OF THE INVENTION




The present invention discloses an electrical terminal socket assembly which incorporates a helically wound and compressible spring cage and an encircling tubular shaped and compressible “T” shaped terminal sleeve for holding the spring cage in place. As previously explained, the present assembly provides a low cost solution for a quick connect assembly and which requires a much greater degree of torque control in assembly, as opposed to prior art bolt and nut type cable connections. The present invention is also an improvement over prior art assembly techniques which require the spring cage element to be formed in place after it has been inserted into the corresponding sleeve component, particularly in that the present invention provides only two components and a simplified assembly process. It is further contemplated that the assembly part can be manufactured in conjunction with a fast speed progression die.




A spring cage blank has first and second extending edges and a plurality of spaced apart and angled beams extending between the edges. In a preferred variant, a plurality of the spring cage blanks are provided in spaced fashion between first and second carrier strips and which permit the blanks to be transferred in succession into an appropriate die stamping or forming operation. Such stamping or other suitable forming operation typically includes the provision of first and second spaced apart and opposing mandrels, each further including a substantially cylindrical projection with inwardly sloping walls engaging thereupon the associated extending edges of the spring cage.




In one variant, female die patterns are employed in one or more stamping/forming operation to form the spring cage blank in to a substantially cylindrical configuration and in which the angled beams are arranged in a substantially helix pattern. In a still further variant, the stamping dies are succeeded by alternately configured forming dies, the purpose of which being to grasp the opposite extending edges of a substantially formed spring cage and subsequently to torsionally bend the spring cage a specified angular degree in a direction consistent with the angle established by the beams. Depending upon the configuration of the female die surfaces, and/or the application of the torsional bending step, the formed spring cage may further exhibit a substantially “hourglass” shape and which will improve its connector biasing qualities in subsequent use.




A substantially tubular shaped and interiorly hollowed sleeve is provided for receiving the substantially cylindrically/hourglass shaped spring cage in axially inserting and fixedly and pressure retaining fashion. The spring cage is typically dimensioned to slidably engage within the axial interior of the tubular sleeve without an excessive amount of effort. The sleeve is in turn typically slitted or otherwise configured so that opposing edges are separated by a specified gap and are capable of being compressingly engaged together. In one preferred variant, meshing keyed portions are defined along the slitted and gapped surface and so that, upon inserting assembly of the formed spring cage, the exterior surface of the sleeve is compressingly engaged (such as again through the employed of stamping dies or other suitable manufacturing operation) and in order to create a desired interference fit between the spring cage and the interior of the sleeve.




The interference fit created between the spring cage and sleeve provides the primary retaining feature of the terminal socket assembly. Additionally however, a lance is associated with a transition area of the tubular sleeve and functions as a cage forward stop. A front dish-like feature is installed after the cage is located in proper position. The front dish-like feature functions as a forward stop and further assists in retaining the cage inside the sleeve. It is again understood that the lance and dish-like feature are supplemental features which assist in retaining the cage inside the tubular sleeve.




In order to complete the electrical connection, an extending end of a male pin is secured within the interiorly hollowed sleeve and assembled spring cage. The sleeve, in any of a number of alternate variants, further includes actuable gripping portions for fixedly engaging against and securing an extending end of a cable. The gripping portions may further be configured so that the cable extends in an angular (typically 90°) relationship relative to the male pin secured to the sleeve and spring cage assembly.




As is particularly disclosed in the present application, assembly configurations of the quick connect socket assembly disclose variations of “T” shaped sealed assemblies. Also, sealed housing assemblies disclosed by the present invention include interengaging male and female outer connecting portions and associated seals and retainers, for electrically and environmentally sealing and insulating the socket assembly and extending cables.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an illustration of spring cages, in initial flat blank form, exhibiting a plurality of angled and spaced apart beams, and which are supported between upper and lower carrying strips according to the preferred embodiment of the present invention;





FIG. 2A

is an illustration of the spring cage blank after a first forming operation, and in which the angled and spaced apart beams extend according to a given arcuate and pre-calculated curvature;





FIG. 2B

is a cutaway view taken along line


2





2


of FIG.


2


A and which illustrates a side view configuration of the selected spring beam illustrated in

FIG. 2A

, prior to subsequent forming operations performed according to the present invention;





FIG. 3A

illustrates an operating station employed in a spring cage bending operation according to a preferred variant and in which an initial forming operation is performed upon the previously arcuately formed beams of the spring cage blank of FIG.


2


A and by compression forming a selected spring cage blank about a pair of opposing and configured mandrels secured, respectively, to first and second actuating cylinders;





FIG. 3B

illustrates a further operating station employing a further compression forming operation to a semi-cylindrically configured spring cage;





FIG. 3C

illustrates a yet further operating station in which a yet further compression forming operation is performed to a more substantially and cylindrically configured spring cage;





FIG. 3D

illustrates a final operating station in which a her compression forming operation is performed to complete the cylindrical spring cage shaping of the blank and in which opposite joining ends of first and second extending ends are over-flexed in opposite directions in order to establish an on-plane configuration during subsequent material spring-back;





FIG. 4

illustrates a spring cage bending operation according to a second preferred variant of the present invention and in which a single forming stage again includes a pair of opposing and cylinder actuated mandrels, combined with first and second opposing and actuable forming dies defining collectively a substantially hourglass-shape configuration to be imparted to the spring cage;





FIG. 4A

is a cutaway view taken along line


4


A—


4


A in FIG.


4


and illustrating, in side cutaway profile, the arcuate hourglass configuration established between mating female die surfaces and which also completes the progression set forth in

FIGS. 2A

to


4


A to illustrate the manner in which the contact beams of the cage are formed and constructed in a substantially hourglass configuration;





FIG. 5

illustrates a spring cage bending operation according to a third preferred variant of the present invention, substantially as presented in the variant of

FIG. 4

, and in which, in a first forming operation, the mating female die surfaces are configured to provide a cylindrically formed spring cage with a larger and substantially constant radius;





FIG. 6

illustrates a succeeding forming operation, to any of the afore-described preferred variants, and which provides an operating station including first and second pairs of opposingly actuable forming dies each of which including meshing teeth which, in combination with the cylinder actuable mandrels, grasp the end connecting belts of the associated and cylindrically formed spring cage to impart a further twisting and torsional profile;





FIG. 7

illustrates a substantially formed spring-cage and which exhibits both a helical winding pattern to the spaced beams as well as a substantially hourglass configuration;





FIG. 8

is an exploded illustration of a substantially assembled and tubular/compressible terminal sleeve, housing a formed and inserted spring-cage for mating with a male pin, and within an opposite end of which is engaged an existing vehicle cable according to the present invention;





FIG. 8A

is an illustration of the terminal sleeve provided in an initially blank-shape prior to subsequent forming operations performed according to the present invention;





FIG. 8B

is an illustration, similar to that illustrating in

FIG. 8

, and in which the engaging end of male pin is illustrated mated to the sleeve terminal according to the present invention;





FIG. 9

is an exploded view of an assembly operation for inserting and fixing a formed spring cage within a terminal sleeve according to the present invention;





FIG. 10

is a cutaway view taken along line


10





10


of

FIG. 9

, following insertion of the spring cage into the sleeve, and illustrating the biasing nature of the compressible sleeve applied to the cage in order to create an interference fit therebetween;





FIG. 11

is a first exploded view of a sealed terminal arrangement according to the present invention and which incorporates an eyelet terminal and associated O-ring;





FIG. 12

is a second exploded view of an unsealed terminal arrangement similar to that illustrated in

FIG. 11 and

, as with both

FIGS. 11 and 12

, an outer diameter of the spring cage being substantially equal to or slightly smaller than a corresponding inside diameter of the tube which is compressible about the inserted spring cage;





FIG. 13

is an exploded view of an assembly operation according to a further preferred variant of the invention and in which an outer diameter of the spring cage is substantially equal to or slightly smaller than an inside diameter of a modified terminal sleeve, which is compressible about the inserted spring cage;





FIG. 14

is an exploded view of a 90 degree variant of a terminal sleeve according to the present invention;





FIG. 15

is an illustration of a button-type terminal sleeve for use in a “T” shape sealed connector according to the present invention;





FIG. 15A

is a side cutaway view of a “T” shaped terminal assembly such as is generally shown in FIG.


15


and illustrating in side cutaway a first interengaging configuration of the extending bracket portions and buttons;





FIG. 15B

is a side cutaway view of a “T” shaped terminal assembly such as again is generally shown in FIG.


15


and illustrating in side cutaway a further engaging configuration of the buttons extending from a first selected bracket portion and through apertures defined in an aligning portions of the other selected bracket portion;





FIG. 15C

is a side cutaway view of a “T” shaped terminal assembly according to a a further preferred variant of the present invention and which illustrates, in side cutaway, a weld joint established between two brackets and welding of a trailing edge of a first bracket portion to an upper planar surface of the other and integrally extending bracket portion;





FIG. 15D

is a side cutaway view of a “T” shaped terminal assembly according to a still further preferred variant of the present invention and which illustrates, once again in side cutaway, riveting of a first selected bracket portion to the other and integrally extending bracket portion;





FIG. 15E

is a side cutaway view of a “T” shaped terminal assembly according to a yet further preferred variant and including an engaging configuration including a rivet which projects through apertures defined in aligning portions of both selected bracket portions;





FIG. 16

is an exploded view of a “T” shaped sealed connector incorporating the button-type terminal illustrated in

FIG. 15

; and





FIG. 17

is an exploded view of a 90° sealed connector according to a further assembled variant of the present invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Referring to the appended drawing illustrations, and in particular to

FIGS. 8 and 8B

, a terminal socket assembly is illustrated at


10


according to one preferred variant and in order to interconnect electrically powered vehicular components (not shown) via an associated male pin


12


and a cable


14


, such connecting inputs as pins and cables typically corresponding to an input or output of selected vehicular components. As previously described, the terminal assembly and method for constructing provides a low cost solution for a quick connect assembly and which requires a much greater degree of torque control in assembly, as opposed to prior art bolt and nut type cable connections. The present invention is also an improvement over prior art assembly techniques which require the spring cage element to be formed in place after it is has been inserted into the corresponding sleeve component.




Referring again to

FIG. 1

, a spring cage blank assembly is generally illustrated at


16


and, in the preferred embodiment, includes individual and spaced apart spring blanks


18


,


20


, et seq., which are supported upon a pair of first


22


and second


24


carrier strips. The carrier strips


22


and


24


each in turn include spaced apart and axially defined apertures


26


(defined through both top


22


and bottom


24


strips) as well as establishing connecting portions with the blanks (see connecting portions


28


and


30


for spring cage blank


18


and connecting portions


32


and


34


for blank


20


).




The apertures


26


defined in the upper and lower carrier strips permit the assembly


16


to be transported upon a suitable conveying apparatus (not shown), such as which operates in conjunction with a suitable stamping or forming operation (as will be hereinafter described). The connecting portions


32


,


34


and


36


,


38


further function to provide first and second supporting locations for the subsequent shaping and forming operations to be performed on each of the spring cage blanks


18


,


20


, et seq.




The spring cage blanks


18


,


20


, et seq., are each constructed of a spring copper material, having a specified thickness and configuration. In particular, and referencing the blank


18


, the spring cage includes a first (or upper) extending edge


40


(secured to the first carrier strip


22


via upper connecting portions


28


and


32


) and a second opposite and spaced apart (lower) extending edge


42


(secured to the second carrier strip


24


via lower connecting portion


30


and


34


).




A plurality of spaced apart and angled beams


44


extend between the extending edges


40


and


42


and, in a preferred embodiment, are provided at an angle ranging typically from between 4° to 25° relative to a longitudinal direction (see at


46


) and in order to provide the plan view appearance of the spring clip


18


with an overall parallelogram shape. It is however understood that the spaced apart beams


44


may be provided at any suitable angle relative to the upper


40


and lower


42


extending edges, the result of which typically having some affect on contact force between male pin and terminal socket assembly.




General illustration


16


′ of the spring blank assembly in

FIG. 2A

illustrates, in particular, a selected spring cage blank


18


′ having undergone a first processing or forming operation and in which an arcuate curvature is formed into each of the spaced apart and angle beams (see at


44


′). The spring cage blanks


16


′ and


20


′ are otherwise substantially identical to that also illustrated at


16


in FIG.


1


and it is understood that any suitable type of bending, stamping or initial forming operation may be provided in order to create the necessary arcuate curvature in the spaced apart beams


44


′. It is also envisioned that the spring cage to be formed can be created from a blank as originally shown in

FIG. 1

, without the additional operation performed by

FIG. 2A

, and within the scope of the invention.




Referring further to

FIG. 2B

, the selected spring clip blank


16


′ in

FIG. 2A

is illustrated in side cutaway profile and exhibiting a cross sectional arcuate profile designed into the extending and angled beams


44


′. In a preferred variant, a pre-calculated radius is designed into the cross sectional geometry of the beams


44


′ so that, during subsequent forming operations, the spring clip acquires the desired substantially hourglass shape (see at


18


′ in

FIG. 7

) for subsequent application within the socket assembly


10


. As is also illustrated by formed spring clip


18


′, an “hourglass” shape may be created and reference is made to the following description.




Referring back to

FIGS. 1 and 2A

, it is also understood that the second spring cage blank


20


and


20


′ (as well as each succeeding blank located along the carrier strips


22


and


24


) is constructed in substantially identical fashion to that more completely illustrated and described at


18


. Accordingly, repetitive enumeration and description of the corresponding elements in second blank


20


is foregone and for purposes of ease of illustration.




Referring to

FIGS. 3A-3D

collectively, a forming operation is illustrated according to a first variant for shaping the spring cage blanks


18


′,


20


′, et seq., into the substantially cylindrical and, in specified instances, hourglass configuration of the spring cage (see again at


18


′ in FIG.


7


). Specifically, the forming operation according to this variant employs a pair of inwardly and opposingly facing mandrels


48


and


50


. One or both of the mandrels


48


and


50


are capable of being actuated inwardly and outwardly and each further includes a substantially cylindrical projection, see at


52


for mandrel


48


, as well as at


54


for mandrel


50


. The cylindrical projections


52


and


54


are likewise arranged in opposing fashion and along a common axis so that, during bending/shaping operations, they provide a support for the associating beams


44


′.




One or both of the mandrels


48


and


50


each includes a short cylinder, see at


49


for mandrel


48


, as well as a same short cylinder for mandrel


50


(not showing in illustrations). Both short cylinders,


52


and one at mandrel


50


(not shown) are likewise arranged in opposing fashion and along a common axis so that, during bending/shaping operations, they provide a support for the associating edges


40


and


42


of the spring cage blank


18


. As best illustrated, the projections


52


and


54


each further include inwardly/downwardly sloping and annular extending walls and which assist in establishing the desired end configuration of the spring cage.




Referring to

FIG. 3A

, an initial operating station, illustrated generally at


56


, and in which female die (illustrated partially


58


) is employed for providing an initial stamping configuration to the curved beams


18


′. As previously described, the provision of the spring clip blanks


18


′,


20


′ et seq., in plurality fashion and supported upon the carrier strips


22


and


24


permits a successive and relatively high speed operation to be performed in which the spring cages are quickly and successively form shaped into the desired configuration


18


′.




The female die


58


includes a specified inwardly radial configuration


60


such that, in an initial forming operation, a first semi-shaping configuration (again

FIG. 3A

) is imparted to the spring cage


18


′. It is also envisioned that a pair of opposing female dies can be provided on opposite facing (upper and lower) sides of the mandrel and spring cage assembly (see also variants of FIGS.


4


and


5


), with the exception of having a different inwardly radial configuration (see again at


60


).




For each succeeding operating station, see at


62


for

FIG. 3B

, at


64


for

FIG. 3C and

, finally, at


66


for

FIG. 3D

, progressively configured female dies (either singularly or in pairs) may be provided (although not shown) for successively shaping the spring cage until it achieves its desired configuration, the hourglass shape,


18


′ (

FIG. 3D

) which substantially replicates the illustration of FIG.


7


.





FIG. 3C

, corners


68


and


70


of the joint end


42


are offset in axial direction and in which the corner


70


is forward and the corner


68


is backward, and further such that end


42


is now arranged in helix fashion, as is joint end


40


. Ideally, the corners


68


and


70


must also be at same plan and which is caused forces exerted by the angular beams


44


′ and material mechanical resistance. The use of the mandrels at each forming station minimizes the offset of the corners


68


and


70


at joint end


42


as well as at other joint end


40


.




In a final of the successive forming operations, and referring specifically to

FIG. 3D

, a turning-slide shape


71


is incorporated into the right side of mandrel


48


. Additionally, a mirrored turning-slide shape (only partially illustrated at


71


′) is arranged at the left side of mandrel


50


. Opposite joining ends of the right half (or less than half) at first extending edge


40


and the left half (or less than half) at second extending edge


42


are over-flexed in opposite axial directions by the shaping forces exerted by the two turning-slide shapes


71


and


71


′ when the mandrels


48


and


50


move inward.




The purpose of the over-flexing is in order to establish an on-plane configuration (meaning corners


68


and


70


are on same plan at end


42


, same fashion at other end


40


) during subsequent material spring-back and which is associated with the tensioned copper spring cage construction. The distance of over-flexing is pre-calculated according to material properties.




It is also envisioned to be within the scope of the invention that a plurality of individual pairs of actuable mandrels (


48


and


50


) be employed (such as for each succeeding operating station in

FIGS. 3A

,


3


B,


3


C and


3


D). Alternatively, a standard pair of mandrels and cylindrically projecting forming surfaces may be provided and, instead, alternating and/or progressively configured female dies may be transferred in succeeding fashion to provide the necessary forming/shaping operations of the spring cage


18


.




Referring now to

FIG. 4

, a further variant is illustrated at


72


of a single stage forming operation of the associated spring cage


18


′ and which again includes such elements as first and second mandrels


74


and


76


, as well as associated and curving cylindrical projections


78


and


80


. The projections


78


and


80


are configured to match the inner annular configuration of the corresponding ends of the spring cage during forming and provide a support shoulder or surface to each of the corresponding edges


40


and


42


of the spring cage blank


18


,


20


, et seq., during formation into its ultimate hourglass shape


18


′ inside of the formed cage. As previously described, the mandrels


74


and


76


and associated projections are mounted in axial and inwardly/outwardly actuating fashion and in order to work in conjunction with an assembly line process by which the elongated carrier strips


22


and


24


transfer each of a succeeding plurality of the spring cage blanks to the operating station


72


.




A pair of opposing and inwardly actuating dies


82


and


84


are provided and in order to define the substantially cylindrically-configured spring cage, in a single forming/stamping operation, with an “hourglass” shaping to the outside surfaces of the substantially formed cage


18


′. This shaping is assisted by female configured surfaces


86


and


88


(corresponding to dies


82


and


84


) and which in particular define the negative impression of the hourglass shape (see also

FIG. 4A

cutaway).




Referring further to

FIG. 5

, an alternate forming operation is illustrated at


90


and which is substantially similar to that previously described at


72


in FIG.


4


. The variant


90


of

FIG. 5

does differ in the manner in which the opposing and mating dies


92


and


94


, and in particular their corresponding and opposing negative impression surfaces


96


and


98


, are configured. The dies


92


and


94


of

FIG. 5

provide a somewhat enlarged and consistent radial profile (see as opposed to substantially hourglass shaped dies


82


and


84


in

FIG. 4

) and in order that the configured spring cage blank


18


′ acquires the ultimately cylindrical shape without the additional “hourglass” configuration at this stage. The projections


78


and


80


of mandrels


74


and


76


, respectively, can additionally be either taper shaped as shown or cylindrical shape.




Referring now to

FIG. 6

, a further forming operation is illustrated at


100


, typically employed subsequent to the initial stamping operation of

FIG. 5

, and which completes the configuration of the previously and substantially cylindrically shaped spring cage blank


18


′ with a desired hourglass configuration. As with the description of

FIG. 5

, the configuration of the spring cage blank


18


, mandrels


74


and


76


and associated shoulder projections


78


and


80


in

FIG. 6

are again repeated and may again be part of a same operating station as utilized with the mating dies


92


and


94


. The additional forming/operating station


100


of

FIG. 6

does also include the provision of first (


102


and


104


) and second (


106


and


108


) pairs of opposing and inwardly actuable forming dies and it is understood that these are transferred into contact with the cylindrically formed spring cage following the stamping procedure of FIG.


5


.




The first pair of forming dies


102


and


104


encircle and are inwardly actuable abut in proximity to the first extending end or edge


40


of the spring cage, the second pair of forming dies


106


and


108


likewise encircle and abutting the second extending end


42


. Each of the forming dies


102


,


104


,


106


and


108


further includes a plurality of teeth arranged in corresponding and semi-circular patterns for securely gripping the edges


40


and


42


of the substantially cylindrically formed spring cage following operation in FIG.


5


and in proximity to the spaced apart beams


44


. Reference is made specifically to semi-circular/radial teeth patterns


110


,


112


,


114


and


116


and which correspond, respectively, with each of the succeeding forming dies


102


,


104


,


106


and


108


.




Upon both pairs


110


&


112


and


114


&


116


of the forming dies being inwardly actuated in gripping fashion about the corresponding ends


40


and


42


of the sleeve, either or both pairs


102


and


104


are rotated a selected angle in a direction consistent with the angle


46


established by the beams


44


′. In a preferred variant, and upon rotation of the selected cage end (such as at


40


), the associated connection


28


is cut off (see as best shown in FIG.


6


), after which the operation performed in

FIG. 5

is commenced and the end


40


is thus free to be rotated.




In the preferred variant, the first pair


114


&


116


of the forming/gripping dies are rotated (the second pair


110


&


112


of forming/gripping dies remaining fixed) in an angular direction ranging from between 12 to 18 degrees (an ideal configuration being a 15° imparted angle) relative to the second pair of forming dies. Following the torsional/twisting operation, the completed spring cage


18


′ is sectioned from the carrier


24


(via the connecting web portions


30


). In this manner, the substantially hourglass shaping is imparted to the previously cylindrically formed configuration of the spring cage at the operation illustrated in FIG.


5


and in order to provide enhanced gripping and biasing characteristics within the socket assembly


10


as will be shortly described in more detail.




Referring again to

FIGS. 8 and 8B

, a substantially tubular shaped and interiorly hollowed sleeve


118


is illustrated in use with the present invention and which forms a component of the assembleable and terminal socket assembly


10


. The sleeve


118


may, similarly to the assembled spring cage


18


′, be formed of a tensioned copper material and, referring further to

FIG. 8A

, it is contemplated that the sleeve


118


may also be initially provided as a blank shape configuration, supported between carrier strips


120


and


122


transferable by apertures


124


formed there along their axial lengths, and connected to the strips


120


and


122


by webbed/connecting portions


126


and


128


. As with the illustration

FIG. 1

of the spring cage blanks


18


,


20


, et seq., a plurality of individual and spaced apart tubular sleeves


118


may be provided along the carrier strips


120


and


122


and which are subject to an appropriate stamping/die forming operation for assembling into the desired shape again referenced in

FIGS. 8 and 8B

.




Referring again to

FIGS. 8

,


8


A and


8


B in particular, the tubular sleeve


118


of the illustrated and preferred variant includes gripping portions in the form of spaced apart pairs


130


and


132


of tabs which, upon inserting the appropriate end of the existing vehicle cable


14


, are bent or actuated in the manner indicated to fixedly engage and electrically communicate the cable


14


. As is also illustrated from the blank layout of FIG.


8


A and the cutaway of

FIG. 10

, an inner base surface of the sleeve


118


corresponding to the pair


130


of tabs includes a plurality of lateral extending and spaced apart grooves


131


, the purpose for which being to provide additional gripping capacity to the coils extending from the cable


14


once the tabs


130


and


132


have been actuated (see arrows in

FIG. 8

) and to the fixing location of FIG.


8


B. The male pin


12


may also include, without any limitation, a configured end with a lead chamfer, as illustrated, which is ideally suited for exerting a correct pressure/friction mating with the biasing interior of the assembled spring cage and sleeve.




The tubular sleeve


118


further includes a substantially axially extending and slitted incision which defines first


134


and a second


136


opposing and predetermined spaced apart edges. The edges


134


and


136


are further defined, in one preferred variant, by an alternating keyed pattern (see at


138


for edge


134


and at


140


for edge


136


). Keyed alternating projecting and recessing keyed portions defined by these patterns meshingly engage one another, upon assembly of the sleeve


118


and in the manner shown in

FIG. 8

, and so that a pretermined and incremental spacing, see also at


142


,


143


and


144


, exists between the mating and opposing edges


134


and


136


and, to a lesser extent, around and along the alternating keyed projections and recesses. The incremental spacing is created by not fully closing the key stone edges


138


and


140


, such that edges


134


and


136


are maintained at a calculated and slightly spaced apart position.




An aspect of the terminal socket assembly


10


is the ability to pressure and frictionally engage the formed spring cage


18


′ within the sleeve


118


, upon completed assembly, and this is performed by initially inserting the cage


18


′ into an axial and open end of the sleeve


118


. Referring to

FIG. 9

, a single pin


148


(or pair of opposite pins


146


and


148


arranged in opposite arraying fashion) may be employed to axially insert the cage


18


′ into the tubular sleeve


118


through the force (linear or opposing) exerted by shoulders


143


and


145


which define narrowed projecting portions


145


and


149


of the pins


146


and


148


, respectively. Typically, the exterior diameter of the cage


18


′ is an incremental amount lesser than a corresponding inner diameter of the tubular sleeve


118


and in order to permit the spring cage


18


′ to be easily inserted during assembly and because the incremental spacing is created by not fully closing key stone edges


138


and


149


extending or recessed into the associated edges


134


and


136


.




The leading portions


147


and


149


in the tool pins


146


and


148


, respectively, are engaged inside with cage ends


42


and


40


in FIG.


10


. In a subsequent forming operation, a pair of mating dies


150


and


152


(having corresponding and opposing mating female surfaces


154


and


156


according to specified radii) compressingly engage and inwardly actuate the sleeve


118


about the installed spring cage


18


′. In this fashion, the inner diameter of the sleeve is decreaded (by virtue of closing the spacing indicated at


142


,


143


and


144


), thereby frictionally and permanently engaging the spring cage


18


′ within the sleeve


118


.




The outer diameters of oppositely inserted leads (see at


147


and


149


in

FIG. 10

) are dimensioned to equal the final diameter of the finished sleeve assembly. During insertion forming (crushing), the sleeve and closing the space


142


,


143


and


144


, the leads


147


and


149


help to avoid cage ends


40


and


42


clapping and also to hold the specified finish diameter. The dimensions of the perimeters of cage ends


40


and


42


are calculated such that seams on each end of


40


and


42


are in tight contact (for example, reference corners


68


and


70


arranged in tight contact in FIG.


3


C). In this fashion, significant amount of pressure between cage ends (


40


and


42


) and the sleeve is built during die crushing the sleeve.




Referring again to

FIG. 10

, a pointed tool


158


may be axially displaced to “flare out” one or more annular end location


160




s


of the tubular sleeve


118


and in order to provide additional (typically secondary) retaining force to the previously assembly and compressed terminal socket assembly. A lance


161


may also be defined upon the inside surface, near the mid to rear end of the sleeve (proximate the gripping portions


130


) and provides an additional type of secondary holding force by limiting the forward movement of the cage


18


′ once it has been inserted into the sleeve


118


.




Referring now to

FIG. 14

, a further valiant


162


of a tubular sleeve is illustrated and which includes first


164


and second


166


open ends. A pair of gripping portions


168


define a portion of the sleeve


162


and extend in substantially angular (typically 90° fashion) relative to the axial direction of the inserting sleeve. Inserting pins


172


and


173


may again be utilized in linearly arranged and opposingly engageable fashion to assemble the spring cage (not shown) into the sleeve


162


, typically through associated first open and inserting end


164


and in similar fashion as to that previously described in FIG.


9


and FIG.


10


. It is also contemplated that all assembly processes, blanking and forming sleeve


118


are built into same progression die.




Referring now to

FIGS. 11

,


12


, and


13


, in succession, a variety of assembly variants are illustrated according to additional aspects of the present invention. Referring first to the illustration


174


of

FIG. 11

, a variation of the sleeve is illustrated at


176


and which is in the form of a tube or bottle with a first end


178


and a second end


180


. The second end


180


is considered a bottom of the tube or bottle shape. The opposite edges


40


and


42


of the configured spring cage


18


′ are dimensioned so that the first edge


40


establishes a smaller diameter than a corresponding inner diameter of the sleeve


176


, whereas the second edge


42


establishes a slightly larger diameter. The first edge


40


with the smaller diameter is inserted first into the sleeve


176


, following which the opposite edge


42


exhibiting the larger diameter is successively inserted in pressure-fitting fashion.




An eyelet terminal


182


is provided and which includes angular (again preferably 90° extending) gripping portions


184


and


186


. An aperture


188


is typically formed through a base of the eyelet terminal


182


and an O-ring


190


is provided which, upon pre-assembly of the spring cage


18


′ into the sleeve


176


, is sandwiched between an inner configured surface


192


of the eyelet terminal


182


and the corresponding first end


178


. The eyelet terminal


182


is then friction fitted into tube


176


. Upon assembly, the eyelet terminal


182


defines an overall component of the socket assembly and provides a sealed terminal.




Referring to

FIG. 12

, a subsequent variant is illustrated at


194


, largely repeating that previously identified in

FIG. 11

, and in which an unsealed variant of the terminal is established by deleting the O-ring


190


. Otherwise, the spring cage


18


′ is assembled into the tube variant


176


of the sleeve in similar fashion and so that the gripping portions


184


and


186


extend in the desired angular relationship and so that they can grasp the associated extending end of a cable to be electrically communicated with the terminal socket assembly.




Referring to

FIG. 13

, a yet further variant


198


of a terminal socket assembly is illustrated and which includes an alternate configuration


200


of a tubular shaped member, which in turn includes an internal receiving sleeve portion


202


(for axially receiving the configured spring cage). The spring cage


18


′ is further dimensioned so that it exerts the slightest of an interference fit with the interior of the sleeve portion


202


upon inserting the cage


18


′. Application of a subsequent compressing force creates the necessary resistance fit of the cage within the tubular sleeve. The illustration


198


additionally illustrates that the terminal socket assembly can be configured in either straight or angled applications and the manner in which the cage


18


′ is inserted into the sleeve member


200


can again be drawn from any existing variant known in the art.




Referring finally to

FIGS. 16 and 17

, two examples of connector housing assemblies are illustrated and which may be utilized with any of the afore-described terminal socket assemblies according to the present invention. It should also be noted that the connector housing assemblies provide additional sealing and insulating characteristics to the underlying terminal socket assembly, when employed in a given vehicular application, however the presence of a given type of housing assembly is not necessary according to the broadest dictates of the present invention.




Referring again to

FIG. 16

, an illustration is presented of a substantially “T” shaped and sealed connector housing


208


according to the present invention. An associated terminal socket assembly is further illustrated at


210


(see also

FIG. 15

) and again presents a sleeve


212


, within which is installed an appropriately configured spring cage


18


′. Compression forming of the cage


18


′ within the sleeve


212


is further provided by a slit


214


defined between corresponding axial surfaces of the sleeve


212


. Bracket portions


216


and


218


integrally extending from the opposing edge locations of the sleeve. At least one button (and illustrated in

FIG. 15

as a pair of buttons


220


) is arranged upon the bracket portions


216


and


218


in engageable fashion and, upon being depressed, compressingly engages the inner diameter of the sleeve about the spring cage. As will be subsequently described in additional detail, the buttons


220


are further configured so that they will lock into place and to retain the desired friction engaging relationship between the sleeve and spring cage. The locking between


216


and


218


can be done in other fashions such as welding and riveting. Additionally, gripping portions


222


are provided in integrally extending fashion from an end of the bracket portion


218


and enable an associated cable end to be secured in a substantially perpendicular manner relative to the extending direction of the sleeve


212


.




Referring to

FIG. 15A

, a side cutaway view is illustrated of a “T” shaped terminal assembly, such as shown in

FIG. 15

, and illustrating in side cutaway a first interengaging configuration of the extending bracket portions


216


and


218


and buttons


220


. In particular, and as is evident in the side cutaway illustration, the button portions


220


are formed by a die stamping or other suitable forming operation and such that the stamped or otherwise formed portions


219


and


219


′ are compressed and flattened in the manner illustrated to define button(s) in the form of dual mushroom shapes in the manner illustrated. In this fashion, the biasing engagement of the bracket portions


216


and


218


about the sleeve


212


and inserted spring cage


18


′ is maintained.




Referring further to

FIG. 15B

, a side cutaway view is shown of a further variant of a “T” shaped terminal assembly, similar to that previously shown in FIG.


15


. According to this variant, a further engaging configuration of the buttons, again generally referenced at


220


, is established by extending portions


223


(as again illustrated in the side cutaway) from selected bracket portion


218


and which project through apertures (see inner annular walls


225


) defined in aligning portions of the other selected bracket portion


216


. A top of extending portion


223


is compressed such that the annular edge portions (see at


227


) of the extending portions are slightly flattened against the corresponding upper surface of the bracket portion


216


and in order to firmly bias towards each other the bracket portions


216


and


218


, and thereby firmly compress the inner diameter of the sleeve


212


about the inserted spring cage


18


′.




Referring to

FIG. 15C

another side cutaway view is shown of a “T” shaped terminal assembly according to a further preferred variant of the present invention. In this variant, the button portions (previously identified at


220


in

FIGS. 15A and 15B

) are substituted by a weld


229


formed along a trailing edge of the bracket portion


216


and an underlaying and adhering surface of the bracket portion


218


. In an alternate configuration, the bracket portions are welded in a middle region to form a firm joint


221


of the bracket portions


216


and


218


, this further typically being accomplished by ultrasonic welding or resistance welding. In this fashion, the bracket portions


216


and


218


are again biased towards each other, and thereby firmly compress the inner diameter of the sleeve


212


(from which they integrally extend) about the inserted spring cage


18


′.





FIG. 15D

illustrates a side cutaway view of a “T” shaped terminal assembly according to a still further preferred variant of the present invention. In this variant, a further mechanism for biasing the integrally extending bracket portions


216


and


218


towards each other includes, as once again illustrated in side cutaway, an angled/bent finger portion


231


(or pair of spaced apart portions) and incorporating material drawn from the extending bracket portion


216


. The finger portion


216


extends through an aligning recess (or recesses) in the corresponding bracket portion


218


and which is defined in the

FIG. 15D

side cutaway by inner annular extending wall


233


defined in the bracket portion


218


. A rivet (or pair of rivets)


235


are provided for securing the downwardly extending ends of the finger portion(s)


216


in inwardly biasing and seating fashion through the apertures and again in order to biasingly compress the inner diameter of the sleeve


212


about the inserted spring cage


18


′.





FIG. 15E

illustrates a side cutaway view of a “T” shaped terminal assembly according to a still further preferred variant of the present invention. In this variant, a further mechanism for biasing the integrally extending bracket portions


216


and


218


towards each other includes, as once again illustrated in side cutaway, at least one rivet


237


having a specified three-dimensional shape and projecting through apertures


239


and


239


′ from bracket portions


216


and


218


, respectively. A top


241


and bottom


241


′ of the rivet


237


is compressed such that associated annular edge portions (see at


243


and


245


) of the rivet are slightly flattened against the corresponding upper surface of the bracket portion


216


and lower surface of the bracket portion


218


, respectively, and in order to firmly bias towards each other the bracket portions


216


and


218


, and thereby firmly compress the inner diameter of the sleeve


212


about the inserted spring cage


18


′.




Referring again to

FIG. 16

, the overall housing/sealing assembly is again shown and includes a female housing


224


having at least a first


226


and a second


228


open and inserting end established at an angle relative to one another. The female housing


224


defines an open interior for receiving, through the first inserting end


226


and in the manner illustrated, the socket assembly


210


, incorporating again the sleeve and interiorly installed spring cage. The gripping portions


222


again extend at an angle relative to the inserting sleeve portion


212


, in proximity to the first inserting end


226


, and for engaging the cable (such as illustrated at


14


in

FIG. 8

) within the first inserting end


226


.




An elongate and internally hollowed male housing, is illustrated generally at


230


, having first


232


and second


234


opposite and open ends. The male housing


230


is engageable with female housing


224


through the opening


228


, such that the second end


234


is fully passed through opening


228


of housing


224


. The hollow of the male housing


230


is then jacked over “T” terminal sleeve


212


. This male housing


230


is locked into female housing


224


through the application of locking fingers (not shown). Upon locking, the male housing


230


is fixed inside female housing


224


and the “T” terminal assembly is fixed and maintained in its desired position. The male housing


230


is usually called terminal position assurance. In application, a male pin (corresponding to male pin


12


in

FIG. 8

) is biasingly engaged with the assembled sleeve and spring cage


210


contained within the female housing


224


.




Additional sealing components include a grommet


236


, engageable over the open first inserting end


226


of the female housing


224


and including a grommet retainer


237


with central aperture


239


through which may extend the connecting cable


238


. Additional elements include a interfacial seal


240


and seal retainer


242


which are ultrasonically welded to the second inserting end


228


of the female housing


224


, and thereby retained in place.




Referring finally to

FIG. 17

, an alternate housing assembly is illustrated at


248


and which provides a 90 degree (as opposed to “T” shape) sealing arrangement about a previously assembled terminal socket assembly, such as previously disclosed at


162


in FIG.


17


). The housing assembly of

FIG. 17

largely replicates the construction arrangement previously set forth in the assembly


208


of FIG.


16


and includes a female housing


250


having a first


252


and a second


254


open inserting end established at a perpendicular angle relative to each other. The female housing


250


again defines an open interior for receiving the assembled sleeve and interiorly installed spring cage assembly


162


. In this variant, the female connector


250


may be provided in halves (not shown) which are assembled over the socket assembly


168


and ultrasonically welded at an intermediate step.




As with the previous embodiment, the gripping portions


168


of the socket assembly


162


extend at an angle relative to the corresponding sleeve


164


. A grommet retainer


270


and subsequent grommet


271


are slid over cable


256


. Following this, the cable


256


is then pushed through the “elbow shaped” female housing


250


. The cable copper wire end


258


, is then crimped to gripping portion


168


of the assembly


162


in the fashion also illustrated at


130


shown in FIG.


8


B. Following this, the cable


256


is withdrawn in reverse pulling fashion back through the female housing


250


, such that the 90 degree terminal assembly


162


is likewise withdrawn into the female housing


250


, and further so that the gripping portions


168


reach the end


254


of housing


250


. The gripping portion


168


is purposely designed such that it easily passes the 90 degree turning of the “elbow shaped” housing


250


. Following the same fashion previously set forth in

FIG. 16

, the grommet


271


and grommet retainer


270


(not shown in

FIG. 17

) are assembled to end


254


of the female housing


250


, a terminal position assurance


255


is locked into the housing


250


and to position the terminal assembly


162


, and seal


256


and seal and retainer


259


are assembled and ultrasonically welded to the end


252


of female housing


250


.




The present invention therefore discloses an improved terminal socket assembly having reduced number of component, minimized joints through electrical power path from male pin through cable at sleeve end which, therefore, increased effective contact area through the electrical power path compared to prior art type pin terminals. The forming process in progression die is used for making cage into hourglass shape. All assembly processes, blanking and forming sleeve


118


are built into same progression die. The use of progression die carriers (see again variants of

FIGS. 3A-3D

through

FIG. 6

) in an automation process provides greater economies of scale in manufacture of the socket assemblies.




The socket assembly is also constructed of a simplified two-piece component arrangement and has been found to require less material and forming operations than other conventional assemblies. Finally, the terminal socket assembly has been found to be cost effective in both low and high current applications and can be used to replace existing nut and bolt power connection systems, thus eliminating torque or cross threading problems.




Having described the presently preferred embodiments, it is to be understood that the invention may be otherwise embodied within the scope of the appended claims.



Claims
  • 1. A terminal socket assembly for interconnecting electrically powered vehicular components with a male input pin and an output cable, said socket assembly comprising:a spring cage exhibiting a substantially cylindrical configuration and in which a plurality of spaced apart and angled beams are arranged in a substantially helix pattern; a substantially tubular shaped and interiorly hollowed sleeve for receiving said configured spring cage in axially inserting and fixedly retaining fashion; first and second bracket portions extending integrally from proximate and lengthwise extending edge locations of said sleeve, a selected one of said bracket portions terminating in a pair of gripping portions, said bracket portions being biased towards each other to firmly compress about an inner diameter of said inserted spring cage; at least one button portion arranged in engageable fashion with said bracket portions and, upon being depressed, compressingly engages an inner diameter of said sleeve about said spring cage; and the male pin being biasingly mated with said interiorly hollowed sleeve and assembled spring cage, said sleeve further comprising gripping portions for fixedly engaging an extending end of the cable.
  • 2. The invention as described in claim 1, said sleeve being originally provided as a blank constructed of a high tension copper, a pair of first and second carrier strips securing, at individual and spaced apart locations, to said sleeve blank.
  • 3. The assembly as described in claim 1, further comprising said button portions being formed by stamping overlapping portions of said first and second bracket portions.
  • 4. The assembly as described in claim 1, further comprising welding a trailing edge of a first selected bracket portion to an underlaying and adhering surface of the oilier selected bracket portion.
  • 5. The assembly as described in claim 1, further comprising welding a surface of a first selected bracket to an opposing surface of the other selected bracket portion in order to form a weld joint which adheres together said opposing surfaces.
  • 6. The assembly as described in claim 1, further comprising a rivet projecting through apertures defined in aligning portions of said bracket portions, said rivet having a specified three-dimensional shape and further comprising compressed annular edge portions adhering about said aligning apertures.
  • 7. The assembly as described in claim 1, further comprising at least one angled finger portion extending from a first selected bracket portion through an aligning recess in the other selected bracket portion, at least one rivet securing to a projecting end of the finger portion.
  • 8. The assembly as described in claim 1, further comprising at least one axially displaceable pin shoulder for inserting said spring cage within said tubular sleeve and prior to actuation of said inwardly compressing dies and pin lead to prevent opposing joining ends of said spring cage from clapping and further in order to maintain finished inside diameter of spring cage.
  • 9. The assembly as described in claim 8, further comprising an inner diameter of tubular sleeve dimensioned to be at least equal in size to a corresponding outer diameter of said inserted cage and in order to pressure retain said cage inside said tubular sleeve after actuation of said inwardly compressing force.
  • 10. The assembly as described in claim 1, said sleeve having at least one open and inserting end, said gripping portions extending in substantially 90 degree fashion from an eyelet terminal assembleable with said sleeve.
  • 11. The assembly as described in claim 10, further comprising an aperture formed through a base of said eyelet terminal, an “O” ring sandwiching between said eyelet terminal and said sleeve.
  • 12. The assembly as described in claim 1, said button portions further comprising extending portions of a first selected bracket portion, said extending portions projecting trough apertures defined in aligning portions of the other selected bracket portion and so that said extending portions further comprise compressed du at mushroom shapes.
  • 13. The assembly as described in claim 12, said extending portions projecting through said apertures further comprising compressed annular edge portions.
  • 14. The assembly as described in claim 1, said spring cage being initially provided as a blank constructed of a high tension copper, said angled beams further comprising, in front and side profiles and upon being configured, a three dimensional and arcuate shape.
  • 15. The assembly as described in claim 14, said angled beams of said spring cage blank each further comprising an angle established at a range of between 4 to 25 degrees relative to a longitudinal direction.
  • 16. The assembly as described in claim 14, further comprising first and second carrier strips securing, in spaced apart and parallel extending fashion, to said first and second extending edges of said spring cage blank.
  • 17. The assembly as described in claim 4, further comprising a plurality of carrier strips securing, at individual and spaced apart axial locations, between said first and second carrier strips.
  • 18. The assembly as described in claim 4, further comprising at least one operating station for forming said spring cage blank into said substantially cylindrical configuration, said operating station having first and second spaced apart and opposing mandrels, each of said mandrels further including a substantially cylindrical projection with inwardly curving walls engaging thereupon associated contact beams of said spring cage, said mandrels each further comprising a short cylinder portion engaging with respective extending edges of said spring cage.
  • 19. The assembly as described in claim 18, said operating station further comprising first and second pairs of opposing and inwardly actuable forming dies, said first pair of forming dies encircling and abutting said first extending end of said spring cage, said second pair of forming dies encircling and abutting said second extending end.
  • 20. The assembly as described in claim 19, each of said forming dies further comprising a plurality of teeth, said teeth engaging associated extending ends of said spring cage in proximity to said spaced apart beams, at least one of said pairs of forming dies being rotated a selected angle in a direction consistent with said angle established by said beams.
  • 21. The assembly as described in claim 20, further comprising said first pair of forming dies being rotated in an angular direction ranging from between 12 to 18 degrees relative to said second pair of forming dies.
  • 22. The assembly as described in claim 18, said at least one operating station further comprising at least one female configured die engageable with said carrier strip.
  • 23. The assembly as described in claim 22, further comprising a pair of dies, each of said dies exhibiting one half of a female configured hourglass shape and which, upon being inwardly actuated in mating fashion and in combination with said mandrels, imparts a substantially corresponding hourglass shape to said spring cage.
  • 24. The assembly as described in claim 22, further comprising a plurality of individual operating stations, each station incorporating a pair of inwardly actuable and mating female dies according to a specified configuration for compression forming said spring cage blank into a substantially cylindrical configuration with a further specified “hourglass shape”.
  • 25. The assembly as described in claim 24, further comprising a final operating station in which opposite joining ends of said first and second extending edges are over-flexed in opposite directions and to correct an offset in helix fashion at each joining end of said spring cage in order to establish an on-plane configuration during subsequent material spring-back.
  • 26. A terminal socket assembly for interconnecting electrically powered vehicular components with a male input pin and an output cable, said socket assembly comprising:a spring cage exhibiting a substantially cylindrical configuration and in which a plurality of spaced apart and angled beams are arranged in a substantially helix pattern; a substantially tubular shaped and interiorly hollowed sleeve for receiving said configured spring cage in axially inserting and fixedly retaining fashion; first and second bracket portions extending integrally from proximate and lengthwise extending edge locations of said sleeve, a selected one of said bracket portions terminating in a pair of gripping portions said bracket portions being biased towards each other to firmly compress about an inner diameter of said inserted spring cage; the male pin being biasingly mated wit said interiorly hollowed sleeve and assembled spring cage, said sleeve further comprising gripping portions for fixedly engaging an extending end of the cable; and an angled and sealed connector housing for encasing said terminal socket assembly and associated male pin and cable, said connector housing further comprising: a female housing having at least first and second open and inserting ends established at an angle relative to one another, said female housing encasing said assembled sleeve and interiorly installed spring cage, said gripping portions extending at art angle relative to said sleeve, in proximity to a selected inserting end of the female housing, and for engaging a selected of the cables; and an elongate and internally hollowed male housing having first and second open ends and which is engageable with said second inserting end of said female housing, the male pin being engageable with said assembled sleeve contained within said female housing.
  • 27. The assembly as described in claim 26, further comprising a grommet and grommet retainer engageable over said first inserting end of said female housing.
  • 28. The assembly as described in claim 26, further comprising a terminal position assurance inserted into and locked in said female housing to position said terminal sleeve assembly.
  • 29. The assembly as described in claim 26, further comprising a seal and seal retainer engageable over said second inserting end of said female housing.
  • 30. The assembly as described in claim 26, said assembled connector housing having a substantially “T” shaped configuration.
  • 31. The assembly as described in claim 26, said assembled connector housing having a substantially 90 degree shaped configuration.
  • 32. The assembly as described in claim 26, said assembled connector housing have a specified shape and configuration and further comprising an ultrasonic welding operation.
  • 33. The assembly as described in claim 26, further comprising the cable being pushed through an interior of said female and 90 degree angled housing, an end of the cable being crimped to said gripping portions of said terminal sleeve, the cable subsequently being withdrawn to draw said sleeve assembly such said gripping portions pass through a corner of said 90 degree path inside said female housing.
  • 34. The assembly as described in claim 33, said gripping portions of terminal sleeve being arranged substantially proximate to said sleeve body such that said gripping portions may easily passes through said corner of 90 degree path inside said female housing.
  • 35. A terminal socket assembly for interconnecting electrically powered vehicular components with a male input pin and an output cable, said socket assembly comprising:a spring cage exhibiting a substantially cylindrical configuration and in which a plurality of spaced apart and angled beams are arranged in a substantially helix pattern; a substantially tabular shaped and interiorly hollowed sleeve for receiving said configured spring cage in axially inserting and fixedly retaining fashion, said tubular sleeve exhibiting a substantially axially extending slit, said slit further defining first and second opposing edges arranged in proximate extending and slightly spaced apart fashion, first and second bracket portions extending integrally from proximate and lengthwise extending edge locations of said sleeve, a selected one of said bracket portions terminating in a pair of gripping portions, said bracket portions being biased towards each other to firmly compress about an inner diameter of said inserted spring cage; and the male pin being biasingly mated with said interiorly hollowed sleeve and assembled spring cage, said sleeve further comprising gripping portions for fixedly engaging an extending end of the cable.
  • 36. The assembly as described in claim 35, each of said opposing edges further defining a plurality of meshing keyed portions.
  • 37. The assembly as described in claim 35, further comprising compressing means engageable with said tubular sleeve to create an interference fit with said axially inserted spring cage.
  • 38. The assembly as described in claim 37, said compressing means further comprising a pair of mating and inwardly actuable dies, each of said dies defining a substantially semi-cylindrical female surface according to a specified radius.
  • 39. The assembly as described in claim 38, further comprising a perimeter of each cage joining end having a specified length such that a seam established therebetween is compressed and significant pressure is created between said spring cage and said sleeve after said inwardly compressing dies actuated.
  • 40. The assembly as described in claim 38, further comprising at least one axially displaceable pin, each of said pins further exhibiting a shoulder with a forwardly projecting portion for engaging and inserting said spring cage within said tubular sleeve and prior to actuation of said inwardly compressing dies, said projecting portions preventing opposing joining ends of said spring cage from collapsing and in order to maintain a desired finished inside diameter of said spring cage.
  • 41. The assembly as described in claim 40, further comprising a lance location of said tubular sleeve being punched a height less than a corresponding cage material thickness, said lance providing a forward stop during assembling of said cage into said sleeve and additional retaining force of said inserted spring cage.
  • 42. The assembly as described in claim 40, further comprising an annular end location of said tubular sleeve being substantially flattened and enlarged to provide additional retaining force of said inserted spring cage.
REFERENCE TO COPENDING APPLICATIONS

The present application is a continuation-in-part application of U.S. application Ser. No. 09/951,012, filed Sep. 14, 2001, entitled “Electrical Terminal Socket Assembly Including Both T-Shaped and 90° Angled and Sealed Connectors”; and claims benefit of U.S. Provisional Application No. 60/271,776, filed Feb. 27, 2001, entitled “Power Feed Attachment”; and U.S. Provisional Application No. 60/232,698, filed Sep. 15, 2000, entitled “Power Feed Attachment”.

US Referenced Citations (14)
Number Name Date Kind
3218606 Schultz Nov 1965 A
4128293 Paoli Dec 1978 A
4445747 Neidich May 1984 A
4550972 Romak Nov 1985 A
4657335 Koch et al. Apr 1987 A
4720157 Nestor et al. Jan 1988 A
4734063 Koch et al. Mar 1988 A
5921822 Kennedy et al. Jul 1999 A
6017253 Schramme Jan 2000 A
6062919 Trafton May 2000 A
6254439 Endo et al. Jul 2001 B1
6425786 Scholler Jul 2002 B1
6482049 Swearingen Nov 2002 B1
6520998 Scholler et al. Feb 2003 B1
Foreign Referenced Citations (1)
Number Date Country
19833675 Feb 2000 DE
Provisional Applications (2)
Number Date Country
60/271776 Feb 2001 US
60/232698 Sep 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09/951012 Sep 2001 US
Child 10/141389 US