1. Field of the Invention
The present invention relates generally to electrical systems, and particularly to testing electrical wiring systems.
2. Technical Background
Installing AC electrical distribution circuits in buildings and/or other structures is typically labor intensive, time-consuming, and a process that requires electricians of various skill levels. As a result the installation process is expensive. The first phase of the installation is commonly referred to as the “rough-in” phase. In new construction, conduit, armored cable, or sheathed cable is disposed throughout the structure to form an electrical power distribution circuit originating at a panel. Junction boxes are installed at appropriate locations, and brackets and metal device boxes are installed throughout the structure where electrical service is desired. Junction boxes, of course, are typically employed to house a connection point, or junction, of several conductors. Device boxes are used to accommodate electrical wiring devices. For example, the types of electrical wiring devices may include, but are not limited to, receptacles, switches, dimmers, GFCIs, transient voltage surge suppressors (TVSS), timer devices, sensors of various types, thermostats, lighting fixtures, and/or combinations thereof. Of course, receptacles include at least one outlet receptacle for providing power from the electrical distribution circuit to a user attachable appliance. The appliance receives power from the outlet receptacle by way of a power cord and user attachable plug that inserts into the outlet receptacle. Outlet receptacles may also be included in other types of wiring devices such as those that have been presented.
AC electrical distribution cables may include two to five conductive wires. Many AC electrical distribution circuits may employ three wires, i.e., a line conductor (hot wire), a neutral conductor, and a ground conductor. Some AC electrical distribution circuits may only employ two wires, the line conductor and the neutral conductor. Yet other AC electrical distribution circuits include five wires for transmission of three-phase power. As those of ordinary skill in the art will understand, three phase power includes three “hot” or “live” wires, a neutral conductor and a ground wire. Each of the hot wires transmits electrical power that is 120 degrees out of phase with the other two hot wires. In any event, after the boxes are placed, the electrical wires are pulled through the conduits and all of the circuits are bonded. The leads from the AC electrical distribution wires extend from the boxes and are visible and accessible for the next phase of the installation process.
After the “rough-in” phase has been completed, the electrical wiring devices are terminated, i.e., they are electrically connected to the wire leads. This part of the installation process is the most costly and time consuming. A journeyman electrician must perform, or supervise, the connection of each wiring device in the structure. In this process, each electrical wire must be stripped and terminated to the device.
In another approach that has been considered, after the rough-in phase is completed, a plug connector device is used to terminate the leads of the AC electrical distribution wires extending from each device box in the installation. After the termination is completed, an electrical wiring device is provided that includes a receptacle disposed in the rear portion thereof. The receptacle is configured to receive the plug device, such that electrical continuity is established between the electrical wiring device and the AC electrical distribution wires when the plug device is inserted into the receptacle. When the wiring device is installed in the device box, the receptacle and plug device are not accessible to the user.
What is needed is an AC electrical testing device configured to test an AC electrical distribution circuit that uses either a terminated electrical wiring device or a terminated plug connector device.
The present invention addresses the needs described above by providing an AC electrical testing device configured to test an AC electrical distribution circuit that uses either a terminated electrical wiring device or a terminated plug connector device.
One aspect of the present invention is directed to an electrical testing device for use in an AC electrical power distribution circuit including a plurality of AC electric power transmitting wires coupled between an AC power distribution point and a device box. The device includes a plurality of electrical probes configured for insertion into an outlet receptacle. A plug test connection arrangement is configured to receive a plug connector when inserted therein. The plug connector includes a plurality of plug contacts and a termination arrangement configured to terminate the plurality of AC electric power transmitting wires such that electrical continuity is established between the AC power distribution point and the plurality of plug contacts. The plug test connection arrangement includes a plurality of test contacts configured to mate with the plurality of plug contacts when the plug connector is inserted into the plug test connection arrangement. The termination arrangement being in a detached relationship from the device box after the plurality of AC electric power transmitting wires are terminated. An electrical test circuit is configured to perform at least one electrical test. The electrical test circuit includes a switch mechanism configured to connect the electrical test circuit to the plurality of electrical probes at a first switch setting or connect the electrical test circuit to the plurality of test contacts at a second switch setting. At least one shock mitigation structure is coupled to the plurality of electrical probes or the plug test connection arrangement and is configured to prevent user access to the plurality of electrical probes or the plug test connection arrangement.
In another aspect, the present invention is directed to an electrical testing device for use in an AC electrical power distribution circuit including a plurality of AC electric power transmitting wires coupled between an AC power distribution point and a device box. The device includes a plug test connection arrangement configured to receive a plug connector when inserted therein. The plug connector includes a plurality of plug contacts and a termination arrangement configured to terminate the plurality of AC electric power transmitting wires such that electrical continuity is established between the AC power distribution point and the plurality of plug contacts. The plug connector is configured to mate within a rear portion of an electrical wiring device via a latching connection to establish electrical continuity between the electrical wiring device and the plurality of AC electric power transmitting wires. The plug test connection arrangement includes a plurality of test contacts configured to mate with the plurality of plug contacts when the plug connector is inserted into the plug test connection arrangement. The termination arrangement is in a detached relationship from the device box after the plurality of AC electric power transmitting wires are terminated. An electrical test circuit is configured to perform at least one electrical test to determine whether the plurality of AC electric power transmitting wires, the plurality of plug contacts or the termination arrangement are correctly interconnected. A display is coupled to the electrical test circuit, the display being configured to generate a user-perceivable signal relating to the at least one electrical test. At least one shock mitigation structure is coupled to the plug test connection arrangement. The at least one shock mitigation structure is configured to prevent user access to the plurality of test contacts when the plug connector is mated with the plug test connection arrangement.
In yet another aspect, the present invention is directed to an electrical testing device for use in an AC electrical power distribution circuit including a plurality of AC electric power transmitting wires coupled between an AC power distribution point and a device box. The device includes a plug test connection arrangement configured to receive at least one plug connector when inserted therein. The at least one plug connector includes a plurality of plug contacts and a termination arrangement configured to terminate the plurality of AC electric power transmitting wires such that electrical continuity is established between the AC power distribution point and the plurality of plug contacts. The plug test connection arrangement includes a plurality of test contacts configured to mate with the plurality of plug contacts when the plug connector is inserted into the plug test connection arrangement. The termination arrangement is in a detached relationship from the device box after the plurality of AC electric power transmitting wires are terminated. An electrical test circuit is configured to perform at least one electrical test to determine whether the plurality of AC electric power transmitting wires, the plurality of plug contacts or the termination arrangement are properly interconnected. The electrical test circuit includes a switch mechanism coupled to a battery. The switch mechanism is configured to couple the battery to the plurality of test contacts and perform the electrical continuity test when the AC electrical power distribution circuit is deenergized. An indicator is coupled to the electrical test circuit. The indicator is configured to generate a user-perceivable signal relating to the electrical continuity test. At least one shock mitigation structure is coupled to the plug test connection arrangement, the at least one shock mitigation structure being configured to prevent user access to the plug test connection arrangement in an energized state.
In yet another aspect, the present invention is directed to an electrical testing device for use in an AC electrical power distribution circuit including a plurality of AC electric power transmitting wires coupled between an AC power distribution point and a device box. The device includes a modular test connection arrangement that has a plurality of replaceable test connectors. The plurality of replaceable test connectors include a replaceable plug test connector arrangement configured to mate with a corresponding plug connector of a plurality of plug connectors. Each plug connector includes a plurality of plug contacts and a termination arrangement configured to terminate the plurality of AC electric power transmitting wires such that electrical continuity is established between the AC power distribution point and the plurality of plug contacts. Each replaceable plug test connector includes a plurality of test contacts configured to mate with the plurality of plug contacts of the corresponding plug connector. The termination arrangement is in a detached relationship from the device box after the plurality of AC electric power transmitting wires are terminated. An electrical test circuit is configured to perform at least one electrical test to determine whether the plurality of AC electric power transmitting wires, the plurality of plug contacts or the termination arrangement are properly interconnected. An indicator is coupled to the electrical test circuit, the indicator being configured to generate a user-perceivable signal relating to the electrical continuity test.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operation of the invention.
Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. An exemplary embodiment of the electrical system of the present invention is shown in
As embodied herein, and depicted in
Reference is made to U.S. patent application Ser. No. 10/680,797 (filed on Oct. 7, 2003), which is incorporated herein by reference as though fully set forth in its entirety, for a more detailed explanation of the various termination arrangements that may be employed for terminating AC distribution wires 12 to plug connector 20. For example, the AC wires 12 may be terminated directly within the body 200 of the plug connector. In another example, so-called pig-tailed wires 212 may extend from the plug contacts disposed within body 200. These pig-tail wires may then be terminated to the AC electrical distribution wires 12 by the methods disclosed in the '797 patent application.
The electrical wiring device 30 includes a cover 32, a body 36, and a generally planar ground strap 34 that is disposed between cover 32 and body 36. As shown, the planar ground strap includes a proximal mounting yoke 340 and a distal mounting yoke 340 disposed on opposing ends of ground strap 34. Mounting screws 342 are employed to mount the wiring device to a structure. Referring back to body member 36, a receptacle 360 in formed in the major rear surface 362. A portion of a wiring device contact assembly 40 is accessible via the receptacle 360. Indeed, receptacle 360 is configured to accept the plug connector 20. Wiring device 30 contains a plurality of contact assemblies 40 configured to mate with the plurality of plug contacts (not shown in this view) when the plug connector 20 is inserted into the receptacle 360.
Referring to
As embodied herein and depicted in
The electrical tester 50 includes an electrical test circuit (not shown) disposed in a housing, which comprises housing 500. In this embodiment, electrical probes 530 are disposed at one end of the device 50 and plug tester connection arrangement 520, in this case a receptacle, is disposed at an intermediate portion thereof. A switch actuator 510 is disposed on the body member 500. The switch actuator 510 is coupled to a switch mechanism (not shown). The switch actuator is configured to select a first switch setting and a second switch setting. For example, in the first switch setting, the electrical test circuit is connected to the electrical probes 530. In this setting, the hot blade 532, the neutral blade 534, and the ground prong 536 is inserted into corresponding outlet receptacle openings to thereby perform an electrical test of the outlet receptacle and its corresponding AC distribution circuit. In the second switch setting, the electrical test circuit is connected to the plurality of test contacts (522, 524, 526) disposed in the plug test connection receptacle 520. In this setting, of course, the plug connector 20 is inserted into the plug test connection receptacle 520 for testing of the plug connector, the termination arrangement, and/or the corresponding AC distribution circuit that it is connected to.
The electrical tester 50 also includes a test display coupled to the electrical test circuit. In this embodiment the display is implemented using light indicators (502, 504, 506). The indicators are configured to generate a user-perceivable signal relating to the electrical test being performed.
Referring back to the plug test connection receptacle 520, it is configured to receive plug connector 20 when it is inserted therein. For clarity's sake, the plug connector 20 (shown above in
The present invention also includes various shock mitigation structures that are used in conjunction with the electrical probes 530 or the plug test connection arrangement 520. The shock mitigation structures are configured to prevent user access to the plurality of electrical probes or the plug test connection arrangement when there is a potential shock or electrocution hazard present.
In this embodiment, the shock mitigation structure is implemented by the receptacle structure 520 formed within a device body. The receptacle 520 includes the plurality of test contacts (522-526) disposed therein in a recessed manner. Another shock mitigation structure is implemented using a three-way switch having a third switch setting disposed between the first switch setting and the second switch setting. The third switch setting disconnects both the electrical test circuit from both the plurality of test contacts and the plurality of electrical probes. The shock mitigation structure may also be implemented by a shroud or hooded structure disposed around the plurality of test contacts. The shock mitigation structure may also be implemented by a removable cap structure (not shown) that covers the electrical probes 530 when they are not in use.
As will be described in greater in detail below, the electrical test circuit employed herein is configured to perform one or more electrical tests. The electrical test circuit may perform any one of a group of electrical tests that include a continuity test, a polarity test, an over-voltage test, an under-voltage test, and a test configured to determine whether the AC circuit-under-test is protected by a protective wiring device. For example, the electrical test circuit is configured to introduce a simulated ground fault to determine whether the AC circuit-under-test is protected by a GFCI. In another example, the electrical test circuit is configured to introduce a simulated arc fault to determine whether the AC circuit-under-test is protected by an AFCI. The protective device may be disposed in the electrical distribution circuit at a different location in the electrical distribution system compared to the location of the actual test. In yet another embodiment, the electrical test circuit may be configured to selectively provide the display with uniquely coded user-perceivable signals at a given time. Each coded signal represents a corresponding one of a plurality of improper wiring conditions in the plurality of AC electric power transmitting wires, the plurality of plug contacts or the termination arrangement.
Referring to
The PCB 501 also includes lamp elements 5020, 5040, and 5060 which are covered by indicator lenses 502, 504, and 506, respectively. The lamp elements 5020, 5040, and 5060 may be implemented as neon light bulbs. In another embodiment, the lamp elements may be implemented using colored LEDs. As will be described below, these individual indicators may be replaced by a single two (2)-dimensional display, e.g., an LCD display or equivalent. Of course, the PCB and lamp elements are disposed in slots 508 formed in housing 500.
As embodied herein and depicted in
The electrical circuit 51 is configured to determine whether the AC electric power transmitting wires, the plurality of plug contacts or the termination arrangement are correctly interconnected. Accordingly, the “Truth Table V” shown to the left of the circuit 51 in
Referring to
In the alternate embodiment, the tester 50 includes lamp 5020 and an annunciator 5106 in place of lamp 5040. The third lamp of the previous embodiment is omitted. Lamp 5020 is placed in series with relay 5102 and connected to the neutral switch contact S1. A battery 5108 is connected to the ground (“green”) switch contacts S2. The annunciator 5106 is connected in series with contact 5104 and resistor R2, and coupled to switch contact S3. The contact 5104 is normally open and controlled by the operation of solenoid coil 5102.
If there is continuity between white and green at the panel, Indicator lamp 5020 (D1) is energized to indicate that the white and green are wired properly. If lamp 5020 (D1) is energized it also indicates that it is most likely that neither the hot (black) and ground (green) wires have not been transposed, nor the hot (black) and neutral (white wires). In any event, when lamp 5020 is energized, current is also flowing through relay solenoid 5102 to thereby close contact 5104. Contact 5104 is open when the neutral (white) and ground (green) wires are improperly wired. The annunciator 5106 is prevented from generating a signal until the wiring error is corrected. If lamp 5020 is not illuminated, the electrician is led to correct the wiring error before proceeding to the next step.
The tester 50 remains installed at the device box for the next step in the test procedure, which involves testing the hot (black) conductor. A jumper is introduced across the load terminals of the corresponding breaker in order to establish continuity between green and black to verify that the black conductor is continuous to the panel. If there is continuity in the black circuit, the annunciator starts producing an audible signal. If not, the wrong breaker in the panel may have been “jumpered” or there is not electrical continuity in the black conductor from the device box to the panel.
In yet another alternate embodiment of the present invention, switch 5100 is implemented as a three pole, four position switch to combine the circuit of
Referring to
The circuit depicted in
As embodied herein and depicted in
Referring to
Referring to
As embodied herein and depicted in
Referring to
As embodied herein and depicted in
In an alternate embodiment, the retractable slide mechanism 53 may be disposed in a third intermediate switch setting such that the electrical probes and the test contacts become mechanically protected when not in use.
As embodied herein and depicted in
As embodied herein and depicted in
In another embodiment, the replaceable contact module 550 has a form factor similar to that shown in
The replaceable contact module 550 may also be configured to include a plurality of electrical probes configured for insertion into an outlet receptacle. As such, the plurality of electrical probes may be configured to include a hot blade structure, a neutral blade structure and a ground prong. Of course, the ground prong may be omitted.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening.
The recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not impose a limitation on the scope of the invention unless otherwise claimed.
No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. There is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This is a continuation of U.S. patent application Ser. No. 11/933,943 filed on Nov. 1, 2007, which is a continuation of U.S. patent application Ser. No. 11/691,116 filed on Mar. 26, 2007, which is a continuation of U.S. patent application Ser. No. 11/357,563 filed on Feb. 17, 2006, which is a continuation of U.S. patent application Ser. No. 11/032,420 filed on Jan. 10, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 10/680,797 filed on Oct. 7, 2003, the contents of which is relied upon and incorporated herein by reference in their entirety, and the benefit of priority under 35 U.S.C. §120 is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
3952244 | Spear | Apr 1976 | A |
3967195 | Averitt et al. | Jun 1976 | A |
4015201 | Chaffee | Mar 1977 | A |
4034284 | Peplow et al. | Jul 1977 | A |
4082995 | Rhude | Apr 1978 | A |
4105968 | Mobley et al. | Aug 1978 | A |
4118690 | Paynton | Oct 1978 | A |
4127807 | Peplow et al. | Nov 1978 | A |
4152639 | Chaffee | May 1979 | A |
4280092 | Wells, Jr. et al. | Jul 1981 | A |
5285163 | Liotta | Feb 1994 | A |
5625285 | Virgilio | Apr 1997 | A |
5642052 | Earle | Jun 1997 | A |
6054849 | Collier et al. | Apr 2000 | A |
6072317 | Mackenzie | Jun 2000 | A |
6218844 | Wong et al. | Apr 2001 | B1 |
6323652 | Collier et al. | Nov 2001 | B1 |
6982558 | Bryndzia et al. | Jan 2006 | B2 |
7057401 | Blades | Jun 2006 | B2 |
7068038 | Mason et al. | Jun 2006 | B2 |
7091723 | Simmons et al. | Aug 2006 | B2 |
7199587 | Hurwicz | Apr 2007 | B2 |
7248056 | Waldschmidt | Jul 2007 | B2 |
7259567 | Sears et al. | Aug 2007 | B2 |
7385406 | Blades | Jun 2008 | B1 |
20060103390 | Simmons et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090045817 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11933943 | Nov 2007 | US |
Child | 12019326 | US | |
Parent | 11691116 | Mar 2007 | US |
Child | 11933943 | US | |
Parent | 11357563 | Feb 2006 | US |
Child | 11691116 | US | |
Parent | 11032420 | Jan 2005 | US |
Child | 11357563 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10680797 | Oct 2003 | US |
Child | 11032420 | US |